Abstract:
A steel cord (10) adapted for the reinforcement of rubber products, the steel cord (10) comprises a core (12) and three or more outer strands (14) twisted around the core (12) in a cord twisting direction. The outer strands (14) comprise outer filaments (16) twisted in a strand twisting direction which is the same as the cord twisting direction. The outer strands (14) have a wavy form which makes spaces between the core (12) and the outer strands. The steel cord (10) has improvements on elongation at break and impact resistance capacity.
Abstract:
A combined cable comprising a core cable of high-strength synthetic fibers, which take the form of a twisted bundle of monofilaments or a plurality of twisted bundles of monofilaments, and comprising an outer layer of steel wire strands, is characterized in that the bundle or bundles of monofilaments is or are stretched, with a reduction in diameter, and held in this state by a sheathing, in particular a braided sheathing. The extension under strain of the core cable under load is thereby reduced, so that the load distribution between the cross section of steel and the cross section of synthetic material of the cable improves.
Abstract:
An uncured, composite rope includes at least one inner tow of structural fibers of a first material and a plurality of outer tows of structural fibers disposed about the at least one inner tow, the structural fibers of at least one of the plurality of outer tows being made from a second material that is different from the first material. The uncured, composite rope further includes an uncured polymeric resin impregnated into the at least one inner tow and the plurality of outer tows.
Abstract:
The object of the invention is a traction sheave elevator and a rope (3) that contains metal as a load-bearing material, such as the suspension rope of an elevator, which rope comprises at least one or more strands (7) laid from metal wires (9) and which rope (3) is lubricated with a lubricant (8). Another object is the use of the aforementioned lubricant for lubricating the rope (3). The lubricant (8) comprises at least oil and thickener, which thickener in the lubricant (8) comprises at least 10% or more of the mass of the lubricant (8).
Abstract:
An uncured, composite rope includes at least one inner tow of structural fibers of a first material and a plurality of outer tows of structural fibers disposed about the at least one inner tow, the structural fibers of at least one of the plurality of outer tows being made from a second material that is different from the first material. The uncured, composite rope further includes an uncured polymeric resin impregnated into the at least one inner tow and the plurality of outer tows.
Abstract:
A wire rope has an independent wire rope core including lubricated individual core wires that are encapsulated in a tubular sheath of elastomeric or polymeric material surrounding the core wires and retaining the lubricant. A plurality of strands are located radially outwardly from and adjacent to the core. Each of the strands include strand wires that are lubricated. The strand wires are encapsulated in a tubular sheath of elastomeric or polymeric material that retain the lubrication for the strand wires. The core and strand encapsulating materials prevent direct metal-to-metal contact between core wires and strand wires, and between strand wires of adjacent strands. The core and strand encapsulating materials are applied in a manner so as to avoid loss of lubricant. Retaining lubrication and preventing direct metal-to-metal contact significantly improves the useful life of the wire rope.
Abstract:
A pneumatic tire comprises a cord-reinforced layer such as carcass, belt, bead reinforcing layer which is made of metallic cords, each metallic cord is made up of six to twelve metallic filaments whose diameter is in a range of from 0.15 to 0.45 mm, the metallic filaments include waved filaments and unwaved filaments, each waved filament is two-dimensionally waved at a wave pitch and wave height before twisted, the wave pitch is in a range of from 5.0 to 35.0 times the diameter of the filament, and the wave height is in a range of from 0.2 to 4.0 times the diameter of the filament, and the metallic filaments are twisted together into the cord at a twist pitch of from 10 to 40 mm so that the two-dimensionally waved filaments are each subjected to a certain rotation around its axial.
Abstract:
The present invention concerns hybrid layered cables some of which can be used to reinforce at least one crown protection ply of tyres for heavy vehicles or earthmovers, and others to reinforce the beads of tyres for light motorised vehicles such as motorcycles. The invention also concerns a composite fabric usable as a crown protection ply of such heavy vehicles or earthmovers, and a bead wire designed to reinforce the said beads and the aforesaid tyres. A hybrid layered cable (C) according to the invention comprises a non-metallic internal layer (Ci) and an unsaturated external layer (Ce) comprising strands (T) each of which is at least in part metallic and which are wound in helix around the said internal layer, the said cable having a relative elongation at break At, measured in tension in accordance with the standard ISO 6892 of 1984, which is higher than 7%. According to another aspect of the invention, the said internal layer is composed of at least one material having a relative elongation at break Ar at 20° C. in excess of 6%.
Abstract:
A pneumatic tire comprises a cord-reinforced layer such as carcass, belt, bead reinforcing layer which is made of metallic cords, each metallic cord is made up of six to twelve metallic filaments whose diameter is in a range of from 0.15 to 0.45 mm, the metallic filaments include waved filaments and unwaved filaments, each waved filament is two-dimensionally waved at a wave pitch and wave height before twisted, the wave pitch is in a range of from 5.0 to 35.0 times the diameter of the filament, and the wave height is in a range of from 0.2 to 4.0 times the diameter of the filament, and the metallic filaments are twisted together into the cord at a twist pitch of from 10 to 40 mm so that the two-dimensionally waved filaments are each subjected to a certain rotation around its axial.
Abstract:
A low stretch elevator rope (10) is obtained in which a plastic core (12) has a central strength member (18) that does not increase the weight of the rope by more than 5%. Moreover, the plastic core (12) has a diameter exceeding 50% of the diameter of the rope (10), when measured prior to winding steel strands (14) onto the core (12). The steel strands (14) that are wound around the core (12) are conventional and are so wound that the plastic material of the core (12) essentially fills the inner interstices (16) between the steel strands (14).