Abstract:
A conductive adhesive is formed by mixing a plurality of conductive fillers into a thermosetting resin. The conductive filler includes a core material made of copper-based metal, a coating film made of silver and a plurality of particles made of silver. The coating film is provided on the core material to cover the core material, and the particles are provided on a surface of the coating film. Accordingly, a surface of the core material is prevented from being exposed. The conductive adhesive can be suitably used for bonding two members.
Abstract:
In an electronic device which realizes high-temperature-side solder bonding in temperature-hierarchical bonding, a bonding portion between a semiconductor device and a substrate is formed of metal balls made of Cu, or the like, and compounds formed of metal balls and Sn, and the metal balls are bonded together by the compounds.
Abstract:
A conductive composition layer, conductive particles as a raw material, a conductive composition therefor, a manufacturing method of the conductive composition layer, etc. are provided wherewith heat conductance can be accelerated between electronic devices or electronic devices can be electrically connected. The conductive composition layer is formed by subjecting to heat treatment at a temperature lower than 230° C. a conductive composition comprising conductive particles having a metal base material and a metal coating material thereon as well as a thermosetting resin having a curing temperature that is lower than 230° C. and/or a thermoplastic resin having a melting point that is lower than 230° C.
Abstract:
An anisotropic conductive compound includes an electrically conducting material suspended in a binder. The electrically conducting material includes nickel coated particles having a coating of silver or gold over the nickel coat and/or gold or silver coated nickel particles. In one embodiment, the binder is formed from the reaction product of a catalyst and a compound comprising an aromatic epoxy resin, a dimer fatty acid diglycidyl ester and oxirane. In another embodiment, the binder is formed from the reaction product of a novalac resin, a catalyst and either a heat polymerized aromatic epoxy resin or a phenoxy modified epoxy novalac resin.
Abstract:
An anisotropic conductive compound includes an electrically conducting material suspended in a binder. The electrically conducting material includes nickel coated particles having a coating of silver or gold over the nickel coat and/or gold or silver coated nickel particles. In one embodiment, the binder is formed from the reaction product of a catalyst and a compound comprising an aromatic epoxy resin, a dimer fatty acid diglycidyl ester and oxirane. In another embodiment, the binder is formed from the reaction product of a novalac resin, a catalyst and either a heat polymerized aromatic epoxy resin or a phenoxy modified epoxy novalac resin.
Abstract:
A conductive adhesive material characterized by metallurgical bonds between electrically-conductive particles dispersed in a polymer matrix of the material. The polymer matrix has a fluxing capability when heated to reduce metal oxides on the surfaces of the particles. At least the outer surfaces of the particles are formed of a fusible material, so that sufficiently heating the conductive adhesive material will reduce metal oxides on the particles, and at least partially melt the fusible metal, enabling the particles to metallurgically bond to each other and to metal surfaces contacted by the adhesive material.
Abstract:
A conductive composition layer, conductive particles as a raw material, a conductive composition therefor, a manufacturing method of the conductive composition layer, etc. are provided wherewith heat conductance can be accelerated between electronic devices or electronic devices can be electrically connected. The conductive composition layer is formed by subjecting to heat treatment at a temperature lower than 230null C. a conductive composition comprising conductive particles having a metal base material and a metal coating material thereon as well as a thermosetting resin having a curing temperature that is lower than 230null C. and/or a thermoplastic resin having a melting point that is lower than 230null C.
Abstract:
A solder paste, includes a flux, a solder alloy particle scattered or mixed in the flux and including Sn and Zn as composition elements, and a metal particle scattered or mixed in the flux and including an element in the IB group in the periodic table as a composition element.
Abstract:
A technique of forming a metallurgical bond between pads on two surfaces is provided. A metal coating placed on each surface includes a first metal base layer and a second metal surface layer. The first and second metals include a low melting point constituent. A first ratio of the two metals forms a liquid phase with a second ratio of the two metals forming a solid phase. The volume of the base layer metal exceeds the volume necessary to form the solid phase between the base metal and the surface metal. Conductive metal particles are provided having a core metal and a coating metal dispersed in an uncured polymer material, at a volume fraction above the percolation threshold. The core metal and the coating metal together include a low melting point constituent. At a first ratio the components form a liquid phase and at a second ratio the two components form a solid phase. The polymer containing particles is placed between the two metal surfaces with the particles interfacing with each other and the surface layer of metal. The structure is heated to a temperature higher than the low melting liquid constituent to form a liquid phase which extends to include the surface of the pads and the surface of the particles, and thereafter form a solid phase by diffusion of the core material into the surface material and the base metal into the coating material.
Abstract:
The occurrence of partial chip detachment is reduced by improving wettability for increasing the bonding strength, and by enabling gradual melting of the solder. Solder material, electronic components, and electronic circuit boards with higher performance and higher reliability are offered. The surface of a solder core, lead-frame surface and electrode surface of electronic components, and copper (Cu) land surface of electronic circuit boards are coated with metal element, which is either indium (In) or bismuth (Bi).