Abstract:
An unmanned aerial launch vehicle (UAV) launch apparatus is disclosed that includes a UAV (400) having an exterior surface, an aerial vehicle (AV) tab (510) extending from the exterior surface, a tube (440) containing the UAV (400), the tube (440) including a tab stop (515) configured to controllably hinder travel of the AV tab (510) past the tab stop (515), and a pair of opposing tab guides (700, 705) configured to position the AV tab (510) for travel over the tab stop (515).
Abstract:
An unmanned aerial vehicle (UAV) can be deployed from a small stowed package for flight and stowed back into the package after the flight is complete is disclosed. The UAV is retracted to a volume that is less than half of it's fully deployed volume. This allows the UAV to be transported to any desired field position on a truck or other convenient transportation. The UAV may also be launched from a ship deck. In a further aspect, the flexible deployment of the UAV will allow a single UAV to be used in place of multiple types of UAVs.
Abstract:
Systems and methods disclosed utilize acceleration information in landing an unmanned aerial vehicle. In particular, one or more embodiments include methods and systems that determine a UAV is landing, identify an acceleration spike relative to the UAV, and modify operation of the UAV while landing based on the acceleration spike. For example, in one or more embodiment, systems and methods identify an acceleration spike, compare the acceleration spike to a pattern indicative of contact with another object, and reduce the rate of rotation of rotors utilized by the UAV for flight based on the comparison of the acceleration spike to the pattern.
Abstract:
In an aspect, in general, a spooling apparatus includes a filament feeding mechanism for deploying and retracting filament from the spooling apparatus to an aerial vehicle, an exit geometry sensor for sensing an exit geometry of the filament from the spooling apparatus, and a controller for controlling the feeding mechanism to feed and retract the filament based on the exit geometry.
Abstract:
Equipment and methods that combine the use of wave powered vehicles and unmanned aerial vehicles (UAVs or drones). A UAV can be launched from a wave-powered vehicle, observe another vessel, and report the results of its observation to the wave-powered vehicle, and the wave-powered vehicle can report the results of the observation to a remote location. The UAV can land on water and can then be recovered by the wave-powered vehicle.
Abstract:
A retention system includes a base supporting a wing spar and a post extending through the base from a first side of the base to a second side of the base. The post inserts through an aperture in the spar. A stop is selectively securable to the post over the second side of the base. A locking member engages the post on the first side of the base. The locking member is configured to selectively move the post from an unlocked position to a locked position in which the post is withdrawn toward the first side relative to the unlocked position. A biasing member encircles the post and is positioned between the stop and the second side. When the locking member is in a closed position the biasing member expands to engage the aperture and resist movement of the wing spar. A plurality of cradles may support the wing.
Abstract:
An aircraft for unmanned aviation is described. The aircraft includes an airframe, a pair of fins attached to a rear portion of the airframe, a pair of dihedral braces attached to a bottom portion of the airframe, a first thrust vectoring module and a second thrust vectoring module, and an electronics module. The electronics module provides commands to the two thrust vectoring modules. The two thrust vectoring modules are configured to provide lateral and longitudinal control to the aircraft by directly controlling a thrust vector for each of the pitch, the roll, and the yaw of the aircraft. The use of directly articulated electrical motors as thrust vectoring modules enables the aircraft to execute tight-radius turns over a wide range of airspeeds.
Abstract:
An aircraft for unmanned aviation is described. The aircraft includes an airframe, a pair of fins attached to a rear portion of the airframe, a pair of dihedral braces attached to a bottom portion of the airframe, a first thrust-vectoring (“T/V”) module and a second T/V module, and an electronics module. The electronics module provides commands to the two T/V modules. The two T/V modules are configured to provide lateral and longitudinal control to the aircraft by directly controlling a thrust vector for each of the pitch, the roll, and the yaw of the aircraft. The use of directly articulated electrical motors as T/V modules enables the aircraft to execute tight-radius turns over a wide range of airspeeds.
Abstract:
The embodiments herein disclose a personal UAV kit for storing, preparing and remote control of micro UAVs (40). The UAV kit includes a base unit (10), a control unit (30) and at least one UAV. The UAVs can typically be a winged aircraft with foldable wings or a helicopter with a two-bladed or foldable rotor. The base unit comprises UAV compartments for housing at least one UAV, bay (14) for storing the control unit, batteries and electronic components for charging, communication, control and processing and storing of data. In addition, the system includes an eye near display device for viewing system information and sensor data, typically live video, transmitted from the UAV.