Abstract:
A steel cord (10) comprises a core with one or more core steel filaments (12) and further comprises a first layer of intermediate steel filaments (14) twisted around the core, and a second layer of second steel filaments (18) twisted around the first layer. At least one of the intermediate steel filaments is individually coated by means of a polymer (16) with a minimum thickness of 0.010 mm. The polymer (16) reduces the fretting between the coated intermediate steel filaments (14) and the other steel filaments and makes the steel cord suitable for reinforcement of carcass plies of a tire.
Abstract:
PURPOSE: A rope and a detecting device of the damage of the rope are provided. The detecting device is capable of measuring the damage thereof precisely, detecting the damage when the rope is moved and determining easily residual strength of the rope and a point in time to change the rope. CONSTITUTION: A rope(10) contains a bunch of wire keeping tensile load supported by each rope. The wire is characterized by giving tension and bend to the rope to break the wire partly. A detecting method of the damage of the rope comprises the steps of: generating magnetic field in the bunched wire; and measuring magnetic flux leaked from the bunched wire to detect the damage of the rope correspond to leakage of the magnetic flux. A detecting device thereof comprises: a pair of magnetic cores capable of magnetizing to generate magnetic field in the bunched wire; and a magnetic sensor measuring leaked the magnetic flux.
Abstract:
A wire cable construct including a plurality of strands each made of a plurality of wire filaments, the strands and wire filaments arranged in a 37 x 7 configuration of 37 strands of 7 wire filaments each, with the strands arranged in four layers including a first, central layer of a single strand, a second layer of six strands, a third layer of twelve strands and a fourth, outermost layer of eighteen strands. The cable may have a small diameter for use in medical device applications, and the strand and wire element configuration allows the cable to carry high axial loads, minimizes bending stress when the cable is routed around a tight turn such as a small pulley, and minimizes torsion in the cable due to axial loading.
Abstract:
Изобретение может быть использовано при производстве преднапряженной и закладной канатной арматуры. Арматурный канат состоит из центральной проволоки (1) и расположенных вокруг нее по спирали повивочных проволок (2) внутреннего слоя и повивочных проволок (4) внешнего слоя, каждая из которых имеет участок поверхности, являющийся частью наружной поверхности каната. Расстояние между поверхностями повивочных проволок внешнего слоя (4) составляет не менее половины их радиального размера сечения, при этом на обращенных друг к другу участках поверхности смежных проволок выполнены непрерывные по длине спиральные грани (5), а участок поверхности каждой из повивочных проволок внешнего слоя (4), являющийся частью наружной поверхности каната, имеет по меньшей мере одну обжатую часть (6) непрерывную по всей длине указанных проволок. Представлен также способ изготовления такого каната, состоящий из этапов, на которых изготавливают проволоки круглого сечения, свивают проволоки с помощью канатовьющей машины с вращающимся ротором, осуществляют пластическое обжатие свитого каната путем деформации повивочных проволок в по меньшей мере одном роликовом калибре, вращающемся относительно оси каната, подвергают обжатый канат термомеханической обработке. Существенно увеличивается выносливость каната, при одновременном обеспечении высокого сцеплением с бетоном в продольном направлении и в направлении ввинчивания.
Abstract:
Le câble métallique (30) gommé in situ par une composition de caoutchouc (32). La composition de caoutchouc (32) comprend un polysulfure organique.
Abstract:
A hybrid rope (40) or a hybrid strand (50) comprising a core element (42, 52), a first (44, 54) and a second (46, 56) metallic closed layer surrounding said core element (42, 52). The core element (42, 52) includes a bundle of synthetic yarns. The first metallic closed layer (44, 54) includes a plurality of first strands of wires helically twisted together with the core element (42, 52) in a first direction. The second metallic closed layer (46, 56) includes a plurality of second wires or strands helically twisted together with said core element (42, 52) and said first metallic closed layer (44, 54) in a second direction. The cross-sectional area of the core element (42, 52) is larger than the total cross-sectional area of the first (44, 54) and second (46, 56) metallic closed layers. A corresponding method of producing such a hybrid rope or hybrid strand is also disclosed.
Abstract:
Câble métallique (C-1) à trois couches (C1, C2, C3), gommé in situ, comportant un noyau ou première couche (10, C1) de diamètre d 1 , autour duquel sont entourés ensemble en hélice selon un pas p 2 , en une deuxième couche (C2), N fils (11) de diamètre d 2 , N variant de 5 à 7, autour desquels sont entourés ensemble en hélice selon un pas p 3 , en une troisième couche (C3), P fils (12) de diamètre d 3 , ledit câble étant caractérisé en ce qu'il présente les caractéristiques suivantes (d 1 , d 2 , d 3 , p 2 et p 3 étant exprimés en mm) : - 0,08 1 + d 2 ) 2 3 1 + 2d 2 + d 3 ); - sur toute longueur de câble de 2 cm, une composition de caoutchouc dite "gomme de remplissage" (13) est présente dans chacun des capillaires (14) situés d'une part entre le noyau (C1) et les N fils de la seconde couche (C2), d'autre part entre les N fils de la seconde couche (C2) et les P fils de la troisième couche (C3); le taux de gomme de remplissage dans le câble est compris entre 5 et 30 mg par gramme de câble.
Abstract:
A steel cord (200) is described that is simple and cost effective to produce while solving some particular problems for the reinforcement of elastomer belts such as timing belts or the like. The cord (200) is a single lay cord that comprises a core filament (202), around which a first layer and a second layer of filaments (204, 210, 212) is twisted, all filaments being twisted with the same lay length and direction. By appropriate choice of the lay length, the core filament diameter and the filament diameters of the first layer - the latter being larger or equal to the former - an aggregate gap can form in which intermittently a filament (210') of the second layer gets entrained. This aggregate gap must be between 40 and 70 % of the core filament diameter in order to obtain the desired effect of having a core filament (202) that is deformed with the same lay length and direction as the other filaments (204,210,212). A deformed core filament (202) suppresses the effect of core filament migration. In addition the exceptional rough aspect of the cord (200) leads to good mechanical anchorage in the elastomer. Also the load exerted on the cord (200) is better distributed over all filaments. The use of the cord is not limited to timing belts: an advantageous use of the cord in tyres, hoses, hoisting belts, drive belts and reinforcing strips is anticipated.
Abstract:
A steel cord (10) adapted for the reinforcement of elastomers comprises: a core steel filament (12) with a core steel filament diameter d c and coated with a polymer (14); six intermediate steel filaments (16) with an intermediate steel filament diameter d i smaller than or equal to the core steel filament diameter d c ; these intermediate steel filaments (16) are twisted around the core steel filament (12); ten or eleven outer steel filaments (18) with an outer steel filament diameter d o smaller than or equal to the intermediate steel filament diameter d I ; these outer steel filaments (18) are twisted around the intermediate steel filaments (16), the outer steel filaments (18) are preformed in order to allow rubber penetration inside the core (10). The core steel filament (12), the intermediate steel filaments (16) and the outer steel filaments (18) all have a tensile strength at least 2600 MPa. The cord (10) has an outer diameter D according to following formula: D ≤ d c + 2xd i + 2xd o + 0.1 wherein all diameters are expressed in millimeter (mm).