Abstract:
A wafer table structure providing a single wafer table surface suitable for handling both wafers and film frames includes a base tray having a set of compartments formed therein by way of a set of ridges formed in or on an interior base tray surface; a hardenable fluid permeable compartment material disposed within the set of base tray compartments; and a set of openings formed in the base tray interior surface by which the hardened compartment material is exposable to negative or positive pressures. The base tray includes a first ceramic material (e.g., porcelain), and the hardenable compartment material includes a second ceramic material. The base tray and the compartment material are simultaneously machinable by way of a standard machining process to thereby planarize exposed outer surfaces of the base tray and the hardened compartment material at an essentially identical rate for forming a highly or ultra-planar wafer table surface.
Abstract:
A wafer table structure providing a single wafer table surface suitable for handling both wafers and film frames includes a base tray having a set of compartments formed therein by way of a set of ridges formed in or on an interior base tray surface; a hardenable fluid permeable compartment material disposed within the set of base tray compartments; and a set of openings formed in the base tray interior surface by which the hardened compartment material is exposable to negative or positive pressures. The base tray includes a first ceramic material (e.g., porcelain), and the hardenable compartment material includes a second ceramic material. The base tray and the compartment material are simultaneously machinable by way of a standard machining process to thereby planarize exposed outer surfaces of the base tray and the hardened compartment material at an essentially identical rate for forming a highly or ultra-planar wafer table surface.
Abstract:
A reagent card analyzer comprises an optical signal source configured to transmit an optical signal and an optical signal detector spaced a distance from the optical signal source to define an optical signal path into which the optical signal is transmitted, the optical signal detector configured to detect the optical signal and to output an electrical signal indicative of the optical signal. A reader is configured to read a reagent pad of a reagent card. A reagent card moving mechanism is configured to move the reagent card having the reagent pad including a leading and trailing end through the optical signal path. An optical detector interface is electrically coupled with the optical signal detector and configured to receive electrical signals and to output a pad detect signal indicative of at least one of the leading and the trailing end as the reagent card is moved through the optical signal path.
Abstract:
Improved gas leak detection from moving platforms is provided. Automatic horizontal spatial scale analysis can be performed in order to distinguish a leak from background levels of the measured gas. Source identification can be provided by using isotopic ratios and/or chemical tracers to distinguish gas leaks from other sources of the measured gas. Multi-point measurements combined with spatial analysis of the multi-point measurement results can provide leak source distance estimates. These methods can be practiced individually or in any combination.
Abstract:
A wafer table structure providing a single wafer table surface suitable for handling both wafers and film frames includes a base tray having a set of compartments formed therein by way of a set of ridges formed in or on an interior base tray surface; a hardenable fluid permeable compartment material disposed within the set of base tray compartments; and a set of openings formed in the base tray interior surface by which the hardened compartment material is exposable to negative or positive pressures. The base tray includes a first ceramic material (e.g., porcelain), and the hardenable compartment material includes a second ceramic material. The base tray and the compartment material are simultaneously machinable by way of a standard machining process to thereby planarize exposed outer surfaces of the base tray and the hardened compartment material at an essentially identical rate for forming a highly or ultra-planar wafer table surface.
Abstract:
The invention relates to optoelectronic systems for detecting one or more target particles, for example bacteria and antigens. The system includes a reaction chamber, a specimen collector, an optical detector, and a reservoir containing cells, each of the cells having receptors which are present on the surface of each cell and are specific for the target particle to be detected, where binding of the target particle to the receptors directly or indirectly activates a reporter molecule, for example aequorin or indo-1, thereby producing a measurable optical signal.
Abstract:
The invention relates to optoelectronic systems for detecting one or more target particles (Figure 4). The system includes a reaction chamber, a specimen collector, an optical detector, and a reservoir containing cells, each of the cells having receptors which are present on the surface of each cell and are specific for the target particle to be detected, where binding of the target particle to the receptors directly or indirectly activates a reporter molecule, thereby producing a measurable optical signal.
Abstract:
The invention relates to optoelectronic systems for detecting one or more target particles (Figure 4). The system includes a reaction chamber, a specimen collector, an optical detector, and a reservoir containing cells, each of the cells having receptors which are present on the surface of each cell and are specific for the target particle to be detected, where binding of the target particle to the receptors directly or indirectly activates a reporter molecule, thereby producing a measurable optical signal.
Abstract in simplified Chinese:本发明提供用于判定一晶圆上之(若干)固定位置之晶圆检查座标之方法及系统。一系统包含经组态以将光引导至一晶圆之一边缘上之一光点之一照明子系统。该光点延伸超出该晶圆之该边缘。该系统亦包含一载台,该载台使该晶圆旋转借此使该光点扫描遍及该晶圆之该边缘。该系统亦包含一侦测器,该侦测器经组态以在该光点扫描遍及该边缘时侦测来自该光点之光且回应于该经侦测光产生输出。该系统进一步包含一电脑处理器,该电脑处理器经组态以基于该输出判定该晶圆之该边缘上之两个或两个以上位置之晶圆检查座标且基于该边缘上之该两个或两个以上位置之该等晶圆检查座标判定该晶圆上之(若干)固定位置之晶圆检查座标。