Abstract:
In an electron emission method, a voltage is applied to a field electron emission element that has a boron nitride material containing crystal, formed on an element substrate to show a conical projection of the boron nitride material and shows a stable electron emitting property in an atmosphere when a voltage is applied thereto to emit electrons. An electron emission threshold of the field electron emission element falls due to formation of a surface electric dipolar layer by bringing it into contact with an operating atmosphere containing polar solvent gas when applying a voltage to the field electron emission element so as to emit electrons.
Abstract:
A membrane body of sp3-bonded boron nitride has excellent field electron emission. The membrane body can withstand high intensity of electric field, allows the enhanced emission of electrons resulting in a high density of current, and does not degrade during long use. The membrane body includes a surface texture in a self-organized manner by vapor-phase deposition.
Abstract:
In the present invention an electron-emitting material is provided wherein the field emission initiation voltage or work function is smaller than that of conventional materials. That is, the present invention relates to an electron-emitting sheet material which is a material comprising a substrate 102 and a graphite sheet 101 laminated on the top of the substrate 102, wherein (1) the graphite sheet 101 has a layered structure of layers of graphenes consisting of a plurality of carbon hexagonal networks, (2) the graphenes are layered relative to one another so that the c-axial direction of each graphene is substantially perpendicular to the plane of the substrate 102, (3) the graphite sheet 101 is laminated on top of the substrate 102 so that the c-axial direction of each graphene is substantially perpendicular to the plane of the substrate 102, and (4) the graphite sheet 101 comprises an element other than carbon as a second element.
Abstract:
A method for preparing single-crystalline, rare-earth metal hexaboride nanowires by a chemical vapor deposition process is described. Also described are the nanowires themselves, the electron emitting properties of the nanowires, and the use of the nanowires in electron emitting devices, particularly as point electron sources.
Abstract:
This invention relates to a process for fabricating ZnO nanowires with high aspect ratio at low temperature, which is associated with semiconductor manufacturing process and a gate controlled field emission triode is obtained. The process comprises providing a semiconductor substrate, depositing a dielectric layer and a conducting layer, respectively, on the semiconductor substrate, defining the positions of emitter arrays on the dielectric layer and conducting layer, depositing an ultra thin ZnO film as a seeding layer on the substrate, growing the ZnO nanowires as the emitter arrays by using hydrothermal process, and etching the areas excluding the emitter arrays, then obtaining the gate controlled field emission triode.
Abstract:
To provide an electron emitter, a field emission display unit, a cold cathode fluorescent tube and a flat type lighting device, which employ an electron emitting material producible at a low cost and in a large amount.A conductive mayenite type compound powder containing at least 50 mol % of a mayenite type compound represented by a chemical formula of either 12CaO.7Al2O3 or 12SrO.7Al2O3 and having a maximum particle size of at most 100 μm, is used as an electron emitter, whereby an electron emitter, a field emission display unit, a cold cathode fluorescent tube and a flat type lighting device, are realized that are easy to produce and capable of emitting electrons even at a low applied voltage and whereby a large current can be obtained per the same applied voltage surface.
Abstract translation:提供一种电子发射器,场发射显示单元,冷阴极荧光管和平面照明装置,其采用可以低成本和大量生产的电子发射材料。 一种含有至少50mol%由化学式表示的钙铝石型化合物的导电钙铝石型化合物粉末,其化学式为12CaO.7Al 2 O 3 3或12SrO.7Al
Abstract:
A stable cold field electron emitter is produced by forming a coating on an emitter base material. The coating protects the emitter from the adsorption of residual gases and from the impact of ions, so that the cold field emitter exhibits short term and long term stability at relatively high pressures and reasonable angular electron emission.
Abstract:
A carbon-based material for electron emission sources, electron emission sources containing the carbon-based material, an electron emission device including the electron emission sources, and a method of preparing the electron emission sources are provided. The carbon-based material has a carbon-based material having at least one characteristic selected from the group consisting of a ratio of h2 to h1 (h2/h1) 1.2, where the h2 denotes the relative intensity of a second peak which is a peak in a Raman shift range of 1350±20 cm−1, and the h1 denotes the relative intensity of a first peak which is a peak in a Raman shift range of 1580±20 cm−1 in the Raman spectrum obtained by the radiation of a laser beam having a wavelength of 488±10 nm, 514.5±110 nm, 633±10 nm or 785±10 nm, the FWHM2 denotes the full width at half maximum of the second peak, and the FWHM1 denotes the full width at half maximum of the second peak. The electron emission sources containing the carbon-based material have long lifespan and a high current density.
Abstract:
The present invention provides an emissive material with excellent electron emission characteristics. In particular, the present invention relates to a method for manufacturing an emissive material consisting of oriented graphite, having a step of obtaining an oriented graphite comprising a second component and having pores on the inside by heat treating a polymer film in the presence of a second, non-carbon component.
Abstract:
An electrode for an electron gun and an electron gun using same are provided which make use of stable carbon material having small work function and which permit orientation control to be achieved and which can be manufactured at a low cost. An electrode for an electron gun uses carbon electrode(s) formed from amorphous carbon and carbon nanotubes or carbon nanofibers and molded in linear shape. The carbon electrode is obtained by mixing a resin composition such as chlorinated vinyl chloride resin, furan resin, etc., which forms non-graphitizing carbon after carbonizing, with a carbon powder such as carbon nanotubes or carbon nanofibers and, after extrusion, molding and carbonizing the molding obtained.