Abstract:
Provided are a thermosetting adhesive composition excellent in storage stability, reliability, and low-temperature adhesion properties; and a curl-resistant heat-resistant film and a wiring film obtained using the composition. The thermosetting adhesive composition includes 100 parts by weight of a phenoxy resin having a bisphenol S skeleton in the structure thereof; 5 to 30 parts by weight of a maleimide compound containing a plurality of maleimide groups in the structure thereof; and 3 to 20 vol % of an inorganic needle-like filler. The heat resistant adhesive film is obtained by applying the thermosetting adhesive composition onto a polyimide film, followed by drying. The wiring film is obtained by placing a conductor wiring layer on the heat resistant adhesive film.
Abstract:
The invention offers a board-connecting structure that can provide electrodes with a fine pitch and that can combine the insulating property and the connection reliability. The structure of connecting printed wiring boards 10 and 20 electrically connects a plurality of first electrodes 12 and 13 provided to be adjacent to each other on a first board 11 with a plurality of second electrodes 22 and 23 provided to be adjacent to each other on a second board 21 through an adhesive 30 that contains conductive particles 31 and that has anisotropic conductivity. By heating and pressing the adhesive placed between the mutually facing first electrode 12 and second electrode 22 and between the mutually facing first electrode 13 and second electrode 23, an adhesive layer 30a is formed between the first board 11 and the second board 21 and in the adhesive layer 30a, a cavity portion 33 is formed between the first electrodes 12 and 13 and between the second electrodes 22 and 23.
Abstract:
In one embodiment the present invention provides for a high thermal conductivity highly structured resin that comprises a host highly structured resin matrix, and a high thermal conductivity filler 30. The high thermal conductivity fillers are from 1-1000 nm in length, and high thermal conductivity fillers have an aspect ratio of between 3-100. Particular highly structured highly structured resins include at least one of liquid crystal 40 polymers, interpenetrating networks, dendrimer type matrices, expanding polymers, ladder polymers, star polymers and structured organic-inorganic hybrids 60.
Abstract:
To provide a conductive film that is flexible, extendable and contractible, and for which the electrical resistance hardly increases even when the conductive film is extended. The conductive film contains an elastomer and metallic filler particles, and satisfies a condition (A) [an average value of reference numbers is 0.8 (1/μm) or more, or the metallic filler particles include flake-like metallic filler particles having a thickness of 1 μm or less and an aspect ratio of 26 or more and the average value of the reference numbers is 0.4 (1/μm) or more] and a condition (B) [a number of unit areas for which an area percentage of the elastomer is 60% or more is 20 or more], the condition (A) being a conductivity indicator and the condition (B) being a flexibility indicator.
Abstract:
Provided is a film adhesive that has a high flexibility and a high adhesion strength and is easy to prepare by mixing. The film adhesive contains, as essential components, a bisphenol A phenoxy resin having a molecular weight of 30,000 or more, an epoxy resin having a molecular weight of 500 or less, a glycidyl methacrylate copolymer, a rubber-modified epoxy resin, and a latent hardener. Preferably, the weight of the glycidyl methacrylate copolymer per epoxy equivalent is 1000 or less.
Abstract:
A composite metal fine particle material is provided, in which spherical silver nanoparticles synthesized from a silver compound, a solvent, a reducing agent, and a dispersant, and conductive fillers compose of non-spherical metal fine particles, are mixed. For example, the conductive fillers composed of the non-spherical metal fine particles are formed into slender columnar shapes, plate shapes, or ellipsoidal shapes.
Abstract:
There is provided a piezoelectric vibrator 1 that includes a base substrate 2, a lid substrate 3, a piezoelectric vibrating reed 4, a pair of external electrodes 38 and 39, a pair of through electrodes 32 and 33, and routing electrodes 36 and 37. Both surfaces of the base substrate 2 are polished. The lid substrate 3 includes a recess 3a for a cavity C and is bonded to the base substrate. The piezoelectric vibrating reed 4 is bonded to the upper surface of the base substrate so as to be received in a cavity that is formed between the base substrate and the lid substrate. The pair of external electrodes 38 and 39 is formed on the lower surface of the base substrate. The pair of through electrodes 32 and 33 is formed so as to pass through the base substrate, maintains airtightness in the cavity, and is electrically connected to the pair of external electrodes, respectively. The routing electrodes 36 and 37 are formed on the upper surface of the base substrate and electrically connect the pair of through electrodes to the bonded piezoelectric vibrating reed. The through electrodes are formed by the hardening of paste that contains a plurality of nonspherical metal fine particles.
Abstract:
There is provided a piezoelectric vibrator 1 that includes a base substrate 2, a lid substrate 3, a piezoelectric vibrating reed 4, a pair of external electrodes 38 and 39, a pair of through electrodes 32 and 33, and routing electrodes 36 and 37. Both surfaces of the base substrate 2 are polished. The lid substrate 3 includes a recess 3a for a cavity C and is bonded to the base substrate. The piezoelectric vibrating reed 4 is bonded to the upper surface of the base substrate so as to be received in a cavity that is formed between the base substrate and the lid substrate. The pair of external electrodes 38 and 39 is formed on the lower surface of the base substrate. The pair of through electrodes 32 and 33 is formed so as to pass through the base substrate, maintains airtightness in the cavity, and is electrically connected to the pair of external electrodes, respectively. The routing electrodes 36 and 37 are formed on the upper surface of the base substrate and electrically connect the pair of through electrodes to the bonded piezoelectric vibrating reed. The through electrodes are formed by the hardening of paste that contains a plurality of nonspherical metal fine particles.
Abstract:
One or more embodiments provide for a device that utilizes voltage switchable dielectric material having semi-conductive or conductive materials that have a relatively high aspect ratio for purpose of enhancing mechanical and electrical characteristics of the VSD material on the device.
Abstract:
A printable composition for use in forming a printed element by printing and curing is described. The printable composition comprises a plurality of nanostructures of a first type that, upon printing and curing, form an arrangement defining intermediate volumes thereamong. The printable composition further comprises a plurality of nanostructures of a second type that, upon printing and curing, at least partially fill the intermediate volumes to promote smooth surface topography and reduced porosity in the printed element.