Abstract:
A plurality of electronic circuits and associated signal lines are positioned at respective locations on a base wafer. A cover wafer, which fits over the base wafer, includes a corresponding like number of locations each including one or more cavities to accommodate the electronic circuit and associated signal lines. The cover wafer includes a plurality of vias for making electrical connection to the signal lines. A multi layer metallic arrangement hermetically seals the periphery of each location as well as sealing the bottom of each via. The joined base and cover wafers may then be diced to form individual die packages.
Abstract:
A method is provided for making a MEMS structure (69). In accordance with the method, a CMOS substrate (51) is provided which has interconnect metal (53) deposited thereon. A MEMS structure is created on the substrate through the plasma assisted chemical vapor deposition (PACVD) of a material selected from the group consisting of silicon and silicon-germanium alloys. The low deposition temperatures attendant to the use of PACVD allow these materials to be used for MEMS fabrication at the back end of an integrated CMOS process.
Abstract:
A MEMS device and method of making same is disclosed. In one embodiment, a micro-switch includes a base assembly comprising a movable structure bearing a contact pad. The base assembly is wafer-scale bonded to a lid assembly comprising an activator and a signal path. The movable structure moves within a sealed cavity formed during the bonding process. The signal path includes an input line and an output line separated by a gap, which prevents signals from propagating through the micro-switch when the switch is deactivated. In operation, a signal is launched into the signal path. When the micro-switch is activated, a force is established by the actuator, which pulls a portion of the movable structure upwards towards the gap in the signal path, until the contact pad bridges the gap between the input line and output line, allowing the signal to propagate through the micro-switch. Prior to bonding, the MEMS structures are annealed on a first wafer and the conductive traces and other metals are annealed on a second wafer to allow each wafer to be processed separately using different processes, e.g., different annealing temperatures.
Abstract:
A semiconductor torsional micro-electromechanical (MEM) switch is described having a conductive movable control electrode; an insulated semiconductor torsion beam attached to the movable control electrode, the insulated torsion beam and the movable control electrode being parallel to each other; and a movable contact attached to the insulated torsion beam, wherein the combination of the insulated torsion beam and the control electrode is perpendicular to the movable contact. The torsional MEM switch is characterized by having its control electrodes substantially perpendicular to the switching electrodes. The MEM switch may also include multiple controls to activate the device to form a single-pole, single-throw switch or a multiple-pole, multiple-throw switch. The method of fabricating the torsional MEM switch is fully compatible with the CMOS manufacturing process.
Abstract:
A microelectromechanical switch includes a substrate, an insulator layer disposed outwardly from the substrate, and an electrode disposed outwardly from the insulator layer. The switch also includes a dielectric layer disposed outwardly from the insulator layer and the electrode, the dielectric layer having a dielectric constant of greater than or equal to twenty. The switch also includes a membrane layer disposed outwardly from the dielectric layer, the membrane layer overlying a support layer, the support layer operable to space the membrane layer outwardly from the dielectric layer.
Abstract:
An integrated circuit and method are provided for sensing activity such as acceleration in a predetermined direction. The integrated released beam sensor preferably includes a switch detecting circuit region and a sensor switching region connected to and positioned adjacent the switch detecting circuit region. The sensor switching region preferably includes a fixed contact layer, remaining portions of a sacrificial layer on the fixed contact layer, and a floating contact on the remaining portions of the sacrificial layer and having only portions thereof directly overlying the fixed contact layer and in spaced relation therefrom in a normally open position and extending lengthwise generally transverse to the predetermined direction so that the floating contact contacts the fixed contact layer responsive to acceleration in the predetermined direction. The floating contact is preferably a released beam which is released by opening a window or removing unwanted portions of the sacrificial layer. The methods of forming an integrated sensor advantageously are preferably compatible with know integrated circuit manufacturing processes, such as for CMOS circuit manufacturing, with only slight variations therefrom.
Abstract:
An insulating layer with at least one via is provided over a metal plate. A sacrificial layer is applied over a portion of the insulating layer so that the sacrificial layer extends into the via. A metal bridge having at least one opening is provided over a portion of the sacrificial layer and a portion of the insulating layer so that the metal bridge extends over the via and the opening is situated adjacent a portion of the sacrificial layer. A reinforcing seal layer with a well is provided over the metal bridge so that the well is situated adjacent to at least a portion of the opening. The sacrificial layer is then removed.
Abstract:
Le dispositif microélectromécanique ou nanoélectromécanique (1) comporte une membrane (3) mobile en translation ayant une face inférieure (3a) avec une partie active (31) positionnée au droit d'une électrode d'actionnement (5) sous-jacente. La membrane comporte d'autre part un décrochement (30) qui s'étend en direction du substrat. Pour au moins une partie des positions en translation de la membrane (3), ledit décrochement (30) comporte une portion (30a) qui n'est pas positionnée au droit de l'électrode d'actionnement (5) et qui est proche d'au moins une première portion (50a) de la tranche (50) de l'électrode d'actionnement (5). Le dispositif comporte • (a) ( figure 2) une couche diélectrique (7), qui recouvre ladite première portion (50a) de tranche (50) de l'électrode d'actionnement (5), et/ou • (b) (figure 22) une couche diélectrique, qui recouvre la face inférieure (3a) de la membrane (3) dans une zone correspondant à ladite première portion (30a) du décrochement (30).
Abstract:
Selon un aspect de l'invention, il est proposé un Microsystème ElectroMécanique radiofréquence capacitif ou MEMS RF capacitif comprenant une membrane métallique (1) suspendue au-dessus d'une ligne de transmission RF (3) et reposant sur des plans de masse (6a, 6b), et présentant une face inférieure (lb), une face supérieure (la) opposée à la face inférieure et une première couche (7) comprenant un matériau métallique réfractaire (Matl) recouvrant au moins partiellement la face supérieure de la membrane de manière à empêcher réchauffement de la membrane.
Abstract:
Methods for forming an enclosed liquid metal (LM) drop inside a sealed cavity by formation of LM components as solid LM component layers and reaction of the solid LM component layers to form the LM drop. In some embodiments, the cavity has boundaries defined by layers or features of a microelectronics (e.g. VLSI-CMOS) or MEMS technology. In such embodiments, the methods comprise implementing an initial microelectronics or MEMS process to form the layers or features and the cavity, sequential or side by side formation of solid LM component layers in the cavity, sealing of the cavity to provide a closed space and reaction of the solid LM components to form a LM alloy in the general shape of a drop. In some embodiments, nanometric reaction barriers may be inserted between the solid LM component layers to lower the LM eutectic formation temperature.