Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
Various embodiments of the invention are directed to formation of mesoscale or microscale devices using electrochemical fabrication techniques where structures are formed from a plurality of layers as opened structures which can be folded over or other otherwise combined to form structures of desired configuration. Each layer is formed from at least one structural material and at least one sacrificial material. The initial formation of open structures may facilitate release of the sacrificial material, ability to form fewer layers to complete a structure, ability to locate additional materials into the structure, ability to perform additional processing operations on regions exposed while the structure is open, and/or the ability to form completely encapsulated and possibly hollow structures.
Abstract:
The invention relates to a method for producing micro-structured shaped parts (22) and the resulting products, wherein a first negative or positive photosensitive layer (12) with a layer thickness (D1) is deposited on a substrate (10) and the first negative or positive photosensitive layer (12) is exposed area-by-area with light of a suitable wavelength; a second negative or positive photosensitive layer (12′) with a layer thickness (D2) is deposited on the first negative or positive photosensitive layer (12) and exposed area-by-area with light of a suitable wavelength, wherein the exposed regions (16′) in the second layer (12′) are identical to and/or different from the exposed regions (16) in the first layer (12); the steps of depositing and exposing the photosensitive layer (12, 12′) area-by-area are performed repeatedly until a predetermined height H is attained, wherein the exposed regions (16, 16′) of the photosensitive layers (12, 12′) represent the positive or negative of the microstructure of the shaped part (22); the exposed (16, 16′) or the unexposed regions (18, 18′) of the shaped part (22) are washed out with a developer; and the remaining preform (20) is subsequently solidified.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
A method for producing a micromechanical component is proposed, a trench structure being substantially completely filled up by a first filler layer, and a first mask layer being applied on the first filler layer, on which in turn a second filler layer and a second mask layer are applied. A micromechanical component is also proposed, the first filler layer filling up the trench structure of the micromechanical component and at the same time forming a movable sensor structure.
Abstract:
A multi-layer fabrication method for making three-dimensional structures is provided. In one embodiment, the formation of a multi-layer three-dimensional structure comprises: 1) fabricating a plurality of layers with each layer comprising at least two materials; 2) aligning the layers; 3) attaching the layers together to form a multi-layer structure; and 4) removing at least a portion of at least one of the materials from the multi-layer structure. Fabrication methods for making the required layers are also disclosed. In another embodiment, the formation of a multi-layer three-dimensional structure comprises: 1) attaching a layer of a material to a substrate or a previously formed layer; 2) machining the attached layer to form a layer that comprises at least two materials; and 3) repeating the operations of 1) and 2) a plurality of times to form a multi-layer structure; and 4) removing at least a portion of at least one of the materials from the multi-layer structure to form a desired three-dimensional structure.
Abstract:
A method of fabricating a microneedle is disclosed. The method includes forming at least one recess in a substrate, the at least one recess comprising an apex, forming an electrically seed layer on the substrate including the at least one recess, forming at least one electrically nonconductive pattern on a portion of the seed layer, the at least one nonconductive pattern being a pattern for a sensory area, plating an electrically conductive material on the seed layer to create a plated layer with an opening that exposes a portion of the nonconductive pattern and separating the plated layer from the seed layer and the at least one nonconductive pattern to release a hollow microneedle comprising a tip and at least one sensory area.
Abstract:
Various embodiments of the invention provide techniques for forming structures (e.g. HARMS-type structures) via an electrochemical extrusion process. Preferred embodiments perform the extrusion processes via depositions through anodeless conformable contact masks that are initially pressed against substrates that are then progressively pulled away or separated as the depositions thicken. A pattern of deposition may vary over the course of deposition by including more complex relative motion between the mask and the substrate elements. Such complex motion may include rotational components or translational motions having components that are not parallel to an axis of separation. More complex structures may be formed by combining the electrochemical extrusion process with the selective deposition, blanket deposition, planarization, etching, and multi-layer operations of a multi-layer electrochemical fabrication process.
Abstract:
An electrochemical deposition method in which the structure of a substance to be deposited on the surface of a working electrode is determined, an electrochemical deposition apparatus, and a microstructure are provided. A positive electrode 1 and a negative electrode 2 functioning as a working electrode are arranged oppositely in a liquid tank 5 containing an electrolytic (acid) solution (hereinafter referred to as “solution”) 4 in which plural substance are dissolved in an ionic state, and then a predetermined voltage is applied between the positive electrode 1 and the negative electrode 2. A reference electrode 3 is also arranged in the liquid tank 5 and the potential between the negative electrode 2 and the reference electrode 3 is measured. Since the solution 4 can be considered as a conductor, the potential V1 of the negative electrode 2 relative to the solution 4 can be determined. Furthermore, a reaction inhibitor is admixed in the liquid tank 5, spontaneous electrochemical oscillation (current oscillation in this case) is generated in the electrochemical deposition reaction of the substances in the presence of the reaction inhibitor. The waveform of the electrochemical oscillation is controlled by regulating the potential V1 of the negative electrode, the concentrations of the substances in the solution, and the kind and concentration of the reaction inhibitor, thereby the structure of a substance to be deposited on the surface of the working electrode is determined.
Abstract:
Systems and methods for depositing a plurality of droplets in a three-dimensional array are disclosed. The array can comprise a first type of droplets disposed to form a support structure and a second type of droplets forming a conductive seed layer on the support structure. A structure material can be electrodeposited onto the seed layer to create a three-dimensional structure.