Abstract:
Procédé et appareil d'analyse spectroscopique transitoire d'un métal en fusion selon lesquels une sonde (10) contenant un laser pulsé de puissance élevée (14) produisant un rayon laser pulsé ayant une forme d'onde d'impulsion sensiblement triangulaire est immergée dans le métal en fusion et irradie une quantité représentative du métal en fusion. Le rayon laser pulsé vaporise une partie du métal en fusion pour produire une colonne de plasma ayant une composition élémentaire représentative de la composition élémentaire du métal en fusion. Avant que la colonne de plasma n'atteigne l'équilibre thermique peu après la fin de l'impulsion laser, un détecteur spectroscopique (241) dans la sonde (10) détecte des inversions de lignes spectrales pendant une première fenêtre de temps court. Ensuite, lorsque le plasma de post-luminance se trouve en équilibre thermique, un second détecteur spectroscopique (242) également dans la sonde (10) effectue une seconde mesure spectroscopique de durée courte. Un télémètre (22) mesure et commande la distance entre la surface du métal en fusion et le laser pulsé (14).
Abstract:
A double-pass two-dimensional spectrometer utilizes a telescope which contains only reflective optical components and is therefore free of chromatic aberrations. The telescope is so used in combination with dispersing optics (17,18) as to allow double-pass use of the combination. The telescope has a state of correction such that, for example, an image which is diffraction-limited at 800nm is produced over a flat field, corresponding to a wide-angle object coverage. This state of correction is accomplished with only two mirrors (10,11), one of which is a conic (e.g., hyperbolic) surface of revolution, while the other is a reflecting generalized polynomial aspheric corrector; and both mirrors are rotationally symmetric surfaces of revolution, each about its own axis of revolution. The double-pass nature of the system allows for a compact optical system consisting of only two reflecting surfaces, plus the dispersing optics, and there are no internal obscurations, thus avoiding negative effects of diffraction off of internal structures. The invention is shown for its applicability to each of several types of spectrometer-design configurations.
Abstract:
A double-pass two-dimensional spectrometer utilizes a telescope which contains only reflective optical components and is therefore free of chromatic aberrations. The telescope is so used in combination with dispersing optics (17,18) as to allow double-pass use of the combination. The telescope has a state of correction such that, for example, an image which is diffraction-limited at 800nm is produced over a flat field, corresponding to a wide-angle object coverage. This state of correction is accomplished with only two mirrors (10,11), one of which is a conic (e.g., hyperbolic) surface of revolution, while the other is a reflecting generalized polynomial aspheric corrector; and both mirrors are rotationally symmetric surfaces of revolution, each about its own axis of revolution. The double-pass nature of the system allows for a compact optical system consisting of only two reflecting surfaces, plus the dispersing optics, and there are no internal obscurations, thus avoiding negative effects of diffraction off of internal structures. The invention is shown for its applicability to each of several types of spectrometer-design configurations.
Abstract:
Die Erfindung betrifft einen Echelle-Polychromator und ist anwendbar in Geräten zur spektralphotometrischen Untersuchung von Strahlungsquellen. Sie ist dadurch gekennzeichnet, daß dem Polychromator eine dispersive und polychromatische Beleuchtungseinrichtung vorgeschaltet ist, gebildet aus Eintrittsspaltanordnung (3), Kollimatoroptik (4), Prisma (5) und Kameraoptik (6), wobei die Eintrittsspaltanordnungen des Polychromators (7) und der Beleuchtungseinrichtung (3) jeweils aus einem Hauptspalt zur Bündelbegrenzung in Gitter-Dispersionsrichtung und einem Querspalt zur Bündelbegrenzung in Richtung der Dispersion des Prismas (9) im Echelle-Polychromator bestehen. Der gesamte vom Polychromator zu verarbeitende Wellenlängenbereich wird als Spektrum der Beleuchtungseinrichtung mit vernachlässigbarer Aberration vollständig auf den Querspalt (7.2) des Echelle-Polychromators abgebildet.
Abstract:
Die Erfindung betrifft eine Anordnung zur Untersuchung hochaufgelöster Teilspektren eines Echelle-Spektrums und ist anwendbar zur gleichzeitigen Bestimmung der Intensität verschiedener Spektralelemente eines Strahlungsspektrums, das durch ein Echelle-Spektrometer erzeugt wird. Die Anordnung besteht aus einem ortsauflösenden photoelektrischen Detektor mit mehreren auf einem IC-Chip (0) angeordneten Photosensoren, wobei die Photosensoren auf der Chipfläche an den Orten vorausgewählter Spektrallinien diskret angeordnet sind und jeder Photosensoren aus einer CCD-Sensorzeile (4; 5; 6) und einer Logikschaltung besteht, die in Abhängigkeit von Aktivierungspegeln das Schalten von Versorgungspotentialen und Taktsignalen sowie die Übergabe von Ausgangssignalen auf eine gemeinsame Ausgangssignalleitung ermöglicht. Die einzelnen Sensorelemente der CCD-Sensorzeilen sind bezüglich ihrer Flächen an die Spektralelemente des Echelle-Spektrums angepaßt und verlaufen nacheinander in Richtung der Dispersion des Echelle-Gitters. Die Gesamtzahl der Sensorelemente aller CCD-Sensorzeilen (4; 5; 6) auf dem Chip ist vorzugsweise geringer als die Anzahl der Spektralelemente im Echelle-Spektrum. Eine digitale Logikschaltung erlaubt mittels der von ihr verwalteten Aktivierungspegel die serielle Auslesung der Signale einer wählbaren Teilmenge aus allen CCD-Sensorzeilen (4; 5; 6) in wählbarer Reihenfolge über die gemeinsame Ausgangssignalleitung in Abhängigkeit von äußeren Steuersignalen.
Abstract:
An optical arrangement for use in spectrometry uses a masking device which eliminates unwanted spectral regions prior to optically resolving the unmasked information. The optical arrangement comprises an entrance slit to select incidence spectral energy from an energized source and a concave grating of relatively low dispersion to image the spectrum of the entrance slit onto a stationary mask which simultaneously selects spectral regions of the dispersed incident spectral energy. The selected spectral regions are collimated and recombined and directed onto an Echelle grating to disperse with high resolution the selected spectral regions. A concave mirror focuses the dispersed selected spectral regions into a focal plane of highly resolved spectral energy which can be detected to determine the spectral information coming from the source. The optical arrangement is particularly well suited for use with narrow spectral bandwidth spectral information distributed over a large spectral range. In spectroscopy, desired information very often occupies a tiny fraction of the total spectral information presented to a spectrometer. With this optical arrangement, spectral information can be selected from a much broader band spectral information and collected with high resolution on a small curvilinear portion of the output focal plane. The arrangement is particularly useful for absorption, light scattering or emission spectroscopy. It provides a stable mechanical design making it less sensitive to vibration. Manufacturing mechanical tolerances are also less restrictive.
Abstract:
A spectrometer assembly (10) with a two-dimensional spectrum comprising a first dispersing element (31) for the spectral decomposition of radiation in a main dispersion direction, an imaging optical system (17) for imaging in an image plane the radiation penetrating through an inlet gap (15) in the spectrometer arrangement (10) and enabling a two-dimensional spectrum to be produced, and a surface detector (39) with a two-dimensional arrangement of a plurality of detector elements in the image plane. Said spectrometer assembly is characterized in that a reflector, a refractor, a lens array or another optical element is arranged in the beam path at a point where the dispersed, monochromatic bundles are present in a separated manner, and the reflector, the refractor, the lens array or the other optical element have a surface in the form of a free-form surface wherein the surface occupied by the selected images of the inlet gap at different wavelengths in the image plane is optimised over a selected spectral range of the two-dimensional spectrum.
Abstract:
Techniques and mechanisms for a monolithic photonic integrated circuit (PIC) to provide spectrometry functionality. In an embodiment, the PIC comprises a photonic device, a first waveguide and a second waveguide, wherein one of the first waveguide and the second waveguide includes a released portion which is free to move relative to a substrate of the PIC. During a metering cycle to evaluate a material under test, control logic operates an actuator to successively configure a plurality of positions of the released portion relative to the photonic device. In another embodiment, light from the first waveguide is variously diffracted by a grating of the photonic device during the metering cycle, where portions of the light are directed into the second waveguide. Different wavelengths of light diffracted into the second waveguide may be successively detected, for different positions of the released portion, to determine spectrometric measurements over a range of wavelength.