Abstract:
An ellipsometry system and a detection unit thereof are capable of achieving miniaturization and price reduction associated therewith. The ellipsometry system includes the detection unit that: has an optical polarization element; separates an interference polarization beam obtained by causing the object-reflected polarization beam and reference reflected polarization beam to interfere with each other into a plurality of interference polarization beams on a wavelength basis; and detects the respective separated polarization components in each wavelength. The optical polarization element: has a birefringence characteristic including a first refractive index and a second refractive index; receives the separated interference polarization beams of the respective wavelengths in a wavelength order and in a parallel manner; separates the separated interference polarization beam of each wavelength, on a polarization component basis, while transmitting the same, and outputs the respective separated polarization components in each wavelength in the same direction but along different optical axes.
Abstract:
Die Erfindung betrifft eine Vorrichtung zur Messung der relativen Position zweier relativ zueinander entlang einer Achse oder um eine Drehachse (D) bewegbarer Objekte mit einem Sender (12), der unpolarisiertes Licht aussendet, mit einem Polarisator (20), und mit wenigstens einem Empfänger (16), der die durch den Polarisator (20) durchtretende Lichtintensität misst, um ein positionsabhängiges Signal zu erzeugen, wobei vor dem Empfänger (16) ein Polarisationsfilter angeordnet ist und wobei sich der Empfänger (16) und der Polarisator (20) in Abhängigkeit von der relativen Position der beiden Objekte relativ zueinander bewegen, wobei der Polarisator (20) wenigstens zwei verschiedene Polarisationsrichtungen aufweist und wobei der Polarisator (20) auf einer Fläche angeordnet ist, welche gekrümmt ausgebildet ist.
Abstract:
A method for designing the spatial partition of a filter module (125) used in an aperture-multiplexed imaging system. The filter module is spatially partitioned into filter cells, and the spatial partition is designed by considering data captured at the sensor in light of an application-specific performance metric.
Abstract:
A procedure for self-calibration of an optical polarimeter has been developed that eliminates the need for "known" input signals to be used. The self-calibration data is then taken by moving a polarization controller between several random and unknown states of polarization (SOPs) and recording the detector output values (D 0 , ..., D 3 ) for each state of polarization. These values are then used to create an "approximate" calibration matrix. In one exemplary embodiment, the SOP of the incoming signal is adjusted three times (by adjusting a separate polarization controller element, for example), creating a set of four detector output values for each of the four polarizations states of the incoming signal - an initial calibration matrix. The first row of this initial calibration matrix is then adjusted to fit the power measurements using a least squares fit. In the third and final step, the remaining elements of the calibration matrix are adjusted to a given constraint (for example, DOP=100% for all SOPs).
Abstract:
An apparatus (10) for assessment, evaluation and grading of gemstones has a stage (11) upon which a gemstone may be supported. The stage is enclosed in a housing (15) that is impervious to light. There is at least one light source (14) located in the housing which is adapted to project incident light onto the gemstone. Means for rotating and tilting the stage so as to vary the orientation of the gemstone to the incident light are also present. A digital camera (16) is located in the housing adjacent the or each light source and is adapted to take images of the gemstone based on reflection and/or refraction of the incident light. The apparatus also includes information processing means for calibrating and analysing the images. The information processing means is programmed with instruction sets for assessing one or more of colour, cut, clarity, scintillation, brilliance, lustre, dispersion and sheen. The gemstone is supported upon the stage by securing means (17) engaging the gemstone at its bottom surface.
Abstract:
An ellipsometer or polarimeter system and method for controlling intensity of an electromagnetic beam over a spectrum of wavelengths by applying control (P2) and beam (P) polarizers, optionally in combination with an intervening and control compensator (C).