Abstract:
Provided is an anisotropic conductive adhesive in which excellent optical characteristics and heat dissipation characteristics are obtainable. The anisotropic conductive adhesive contains conductive particles each comprising a metal layer having Ag as a primary constituent formed on an outermost surface of a resin particle, solder particles having a smaller average particle diameter than the conductive particles, reflective insulating particles having a smaller average particle diameter than the solder particles and a binder into which the conductive particles solder particles and reflective insulating particles are dispersed. The conductive particles and the reflective insulating particles efficiently reflect light, thereby improving light-extraction efficiency of an LED mounting body. Additionally, inter-terminal solder bonding of the solder particles during compression bonding increases contact area between opposing terminals, thereby enabling achievement of high heat dissipation characteristics.
Abstract:
There is provided a conductive material which has a rapid reaction rate and is high in fluxing effect. The conductive material according to the present invention includes a conductive particle having solder at at least an external surface, an anionically hardenable compound, an anionic hardener, and an organic acid having a carboxyl group and having a functional group that is an esterified carboxyl group.
Abstract:
A via in a printed circuit board is composed of a patterned metal layer that extends through a hole in dielectric laminate material. A layer of catalytic adhesive coats walls within the hole. The patterned metal layer is placed over the catalytic adhesive within the hole.
Abstract:
The present invention aims to provide electroconductive microparticles which are less likely to cause disconnection due to breakage of connection interfaces between electrodes and the electroconductive microparticles even under application of an impact by dropping or the like and are less likely to be fatigued even after repetitive heating and cooling, and an anisotropic electroconductive material and an electroconductive connection structure each produced using the electroconductive microparticles. The present invention relates to electroconductive microparticles each including at least an electroconductive metal layer, a barrier layer, a copper layer, and a solder layer containing tin that are laminated in said order on a surface of a core particle made of a resin or metal, the copper layer and the solder layer being in contact with each other directly, the copper layer directly in contact with the solder layer containing copper at a ratio of 0.5 to 5% by weight relative to tin contained in the solder layer.
Abstract:
Provided are an adhesive agent capable of providing sufficient electrical continuity to a substrate to which a preflux treatment has been applied and a method for connecting electronic components. There is used an adhesive agent including a (meth)acrylate having an epoxy group in one molecule and a radical polymerization initiator having a one minute half-life temperature of 110 degrees C. or more. A surplus adhesive agent component between terminals flows, whereby an imidazole component in a preflux, the component binding to an epoxy group of an epoxy group-containing acrylate, is drawn out thereby to be removed from a surface of the terminal.
Abstract:
To provide an anisotropic conductive film, which contains conductive particles, wherein the anisotropic conductive film is an anisotropic conductive film configured to anisotropic conductively connect a terminal of a substrate with a terminal of an electronic component, wherein the conductive particles are conductive particles, in each of which a metal plated layer and an insulating layer are sequentially provided on a surface of a resin particle, or conductive particles, in each of which an insulating layer is provided on a metal particle, or both thereof, and wherein 3.0 to 10.0 conductive particles are linked together on average.
Abstract:
A light source and method for making the same are disclosed. The light source includes a plurality of surface mount LEDs that are bonded to a mounting substrate by a layer of asymmetric conductor. Each LED has surface mount contacts on a first surface thereof and emits light from a second surface thereof that is opposite the first surface. The mounting substrate includes a top surface having a plurality of connection traces. Each connection trace includes an n-trace positioned to underlie a corresponding one of the n-contacts and a p-trace positioned to underlie a corresponding one of the p-contacts, the p-trace having an area greater than the p-contact. The layer of asymmetric conductor is sandwiched between the surface mount contacts and the connection traces, and can optionally extend into the spaces between the LEDs to provide a scattering medium for redirecting light leaving the sides of the LEDs.
Abstract:
Disclosed herein are anisotropic conductive particles contained in anisotropic conductive adhesive films which can be used in circuit board mounting applications. The conductive particles have a uniform shape, a narrow particle diameter distribution, and appropriate compressive de-formability and recoverability from deformation. In addition, the conductive particles exhibit enhanced conducting properties without being ruptured when interposed and compressed between connection substrates, thereby achieving a sufficient contact area between the particles and the connection substrates. Further disclosed are polymer-based particles used in the conductive particles.
Abstract:
A circuit connection material 10 comprising an adhesive composition 11 and conductive particles 12, wherein the conductive particles 12 are conductive particles 12 with protrusions 14 comprising one or more metal layers 22 on a core 21, with the metal layer 22 being formed on at least surfaces of the protrusions 14 and the metal layer 22 being composed of nickel or a nickel alloy, and compression modulus of the conductive particles 12 under 20% compression is 100-800 kgf/mm2.