Abstract:
A method of manufacturing a wiring substrate according to the present invention includes a step of forming a wiring layer including connection terminals on a first insulating layer; a step of forming a second insulating layer on the wiring layer and on the first insulating layer; a step of forming electrically insulative dummy portions separated from the wiring layer on the first insulating layer through patterning of the second insulating layer; a step of forming a third insulating layer on the wiring layer, on the dummy portions, and on the first insulating layer; and a step of forming openings in the third insulating layer for exposing the connection terminals in such a manner that upper end portions of the connection terminals protrude from the third insulating layer, and lower end portions of the connection terminals are embedded in the third insulating layer.
Abstract:
A method of making a micro-wire electrode structure includes providing a substrate having a surface. A plurality of first micro-wire electrodes spatially separated by first electrode gaps is located in a first layer in relation to the surface, each first micro-wire electrode including a plurality of electrically connected first micro-wires. A plurality of electrically isolated second micro-wire electrodes in a second layer is located in relation to the surface, the second layer at least partially different from the first layer and each second micro-wire electrode including a plurality of electrically connected second micro-wires. A plurality of first gap micro-wires is located in each first electrode gap, at least some of the first gap micro-wires located in a gap layer different from the first layer, the first gap micro-wires electrically isolated from the first micro-wires.
Abstract:
A micro-wire electrode structure includes a substrate having a surface. A plurality of first micro-wire electrodes spatially separated by first electrode gaps is located in a first layer in relation to the surface, each first micro-wire electrode including a plurality of electrically connected first micro-wires. A plurality of electrically isolated second micro-wire electrodes is located in a second layer in relation to the surface, the second layer at least partially different from the first layer. Each second micro-wire electrode includes a plurality of electrically connected second micro-wires. A plurality of first gap micro-wires is located in each first electrode gap, at least some of the first gap micro-wires located in a gap layer different from the first layer. The first gap micro-wires are electrically isolated from the first micro-wires.
Abstract:
Surge arrester for a an electric machine, comprising a dummy component (2) which is, compared to components on a circuit board (1) of the electric machine, mounted at the shortest distance from a discharge element (4) of the electric machine, the dummy component (2) being connected to earth potential in at least one terminal.
Abstract:
A method including a) forming a through-hole in a dummy substrate including a surface by radiating a laser to the surface of the dummy substrate in a state where the dummy substrate is moved relative to the laser along a direction parallel to the surface of the dummy substrate, b) determining an angle α (−90°
Abstract:
Disclosed herein is a printed circuit board of a build-up structure in which an insulating layer and a circuit layer are stacked on a core layer, the core layer including: an electronic chip cavity in which an electronic chip is accommodated; and a dummy chip cavity in which a dummy chip is accommodated to offset warpage by the electronic chip.
Abstract:
The method of manufacturing a substrate includes: forming a penetrating hole in a base layer; inserting a metal dummy part in the penetrating hole; forming an insulating portion made of synthetic resin to fill a ring-shaped gap between the penetrating hole and the dummy part; forming lower insulating layers, covering the bottom surface of the dummy part, that are made of synthetic resin on the bottom surface of the base layer to be continuous with the insulating portion; forming upper insulating layers, covering the top surface of the dummy part, that are made of synthetic resin on the top surface of the base layer to be continuous with the insulating portion; forming an exposing hole by routing in the upper insulating layers to expose the top surface of the dummy part; and forming a cavity by removing the dummy part exposed through the exposing hole by etching.
Abstract:
A method for manufacturing a removable metalized conformal shield for a circuit substrate having at least one circuit component includes: forming a cast representing the circuit substrate having the at least one circuit component; preparing a metalized conformal shield using the cast; applying the metalized conformal shield to the circuit substrate; measuring an output of the circuit component of the circuit substrate; removing the metalized conformal shield from the circuit substrate; and adjusting the circuit component based on the measured output.
Abstract:
The invention relates to a method of cooling electronic circuit boards using surface mounted devices (SMD), the method comprising the steps of: after or during the board layout, filling empty spaces V1, V2, V3, V4, V5, V6, V7, V8, V9, V10 with at a number of heat sink devices 1, 2, 3, 4, 5 near a thermal hot spot and connecting the number of heat sink devices 1, 2, 3, 4, 5 to a thermally conducting path 25, 27, 29, 31, 33, 35 of the board N, respectively. Further, the invention relates to a heat sink device 1, 2, 3, 4, 5 adapted to implement the method according to the invention.
Abstract:
An electronic device, and associated method, provided with a circuit board (10), with a set of input contacts (IN/COM), a set of output contacts (OUT/COM) and an electrical circuit (18) connected between the input contacts (IN/COM) and the output contacts (OUT/COM) and a controller. The controller carries out a real-time test of the circuit board using a test signal introduced into the electrical circuit, the electrical circuit (18) being designed as a passive network having a characteristic transfer function and provided with at least one capacitive element, wherein the capacitive element is a conductor surface (221) forming a capacitor in the assembled state with a corresponding, device-side conductor surface (222″), which is connected to the electrical circuit (18) via a contact element in the assembled state, whereby the capacitive value of the capacitive element in the assembled state differs from the capacitive value of the capacitive element in the disassembled state.