Abstract:
A method to determine minimum etch mask dosage or thickness as a function of etch depth or maximum etch depth as a function of etch mask implantation dosage or thickness, for fabricating structures in or on a substrate through etch masking via addition or removal of a masking material and subsequent etching.
Abstract:
Photonic crystal cavities and related devices and methods are described. The described cavities can be used as lasers, photovoltaic sources, and single photon sources. The cavities can be both optically and electrically pumped. A fabrication process of the cavities is also described.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A single-photon absorption all-optical modulator, systems employing the same, and methods of making and using the same. An illustrative example is provided based on silicon semiconductor technology that employs rectangular waveguides. In some embodiments, it is observed that the waveguides operate with an absorption density of less than 1017 cm−1s−1mW−1 to provide a single-photon absorption operation mode.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
Temperature control devices and methods are described. The described temperature control devices and methods comprise optical emission and detection assemblies and can be used in PCR and qPCR applications.
Abstract:
Component microfluidic devices which are integrated with polydimethylsiloxane (PDMS) microfluidic chips, include designs for an electrical and optical pressure gauge, valve, electrostatic and magnetic pumps, alternating or mixing pumps, a solenoid, a magnetometer, a magnetically actuated reversible filter and valve, and a hydrolysis valve. These devices enhance and miniaturize microfluidic control, thereby expanding the available capabilities and allowing complete system miniaturization for handheld diagnostic apparatuses.