Abstract:
Die Erfindung betrifft ein Verfahren zum Herstellen eines Permanentmagneten, der wenigstens ein Seltenerd-Element aufweist, wobei ein Ausgangsmaterial in einem Metallpulverspritzgussverfahren verarbeitet wird, und wobei ein in dem Ausgangsmaterial vorhandenes Seltenerd-Element vor einem Entbinderungsschritt in eine inertisierte Verbindung umgewandelt wird.
Abstract:
A dielectric barrier discharge (DBD) plasma apparatus for synthesizing metal particles is provided. The DBD plasma apparatus includes an electrolyte vessel for receiving an electrolyte solution comprising metal ions; an electrode spaced-apart from the electrolyte vessel; a dielectric barrier interposed between the electrolyte vessel and the electrode such that, when the electrolyte solution is present in the electrolyte vessel, the dielectric barrier and an upper surface of the electrolyte solution are spaced-apart from each other and define a discharge area therebetween; and gas inlet and outlet ports in fluid communication with the discharge area such that supplying gas in the discharge area while applying an electrical potential difference between the electrode and the electrolyte solution cause a plasma to be produced onto the electrolyte solution, the plasma interacting with the metal ions and synthesizing metal particles. A method for synthesizing metal particles using a DBD plasma apparatus is also provided.
Abstract:
Brenneinrichtung (1), wobei eine Brennkammer (2) der Brenneinrichtung (1) eine Abgasöffnung (8) aufweist, wird vorgeschlagen, dass die Brennkammer (2) einen ersten Bereich (4) aufweist, dass der erste Bereich (4) eine Vielzahl an zueinander parallelen und jeweils einen Kreismittelpunkt aufweisenden kreissegmentformigen Querschnitte aufweist, wobei eine Verbindung der Kreismittelpunkte im Wesentlichen auf einer Achse (19) liegen, dass eine Gas-Zuleitung (5) mit der Brennkammer (2) eine Mündung (6) ausbildend verbunden ist, dass die Brennkammer (2) im Bereich der Mündung (6) einen Mischbereich (7) zur Durchmischung von über die Gas-Zuleitung (5) zugeführtem Gas mit in der Brennkammer (2) rotierendem Gas aufweist, dass die Mündung (6) in einer Betriebslage an einer Unterseite der Brennkammer (2) angeordnet ist, wobei über die Gas-Zuleitung (5) zugeführtes Gas den ersten Bereich (4) tangential von unten anströmt.
Abstract:
A negative-electrode material (10) for nonaqueous-electrolyte secondary cells which comprises an alloy (11) comprising silicon and a transition metal and, formed on the surface of the alloy (11), a silicon oxide film (12) and a transition-metal oxide film (13); a nonaqueous-electrolyte secondary cell; and a process for producing the negative-electrode material (10) for nonaqueous-electrolyte secondary cells. With respect to negative-electrode materials of the kind shown above for use in nonaqueous-electrode secondary cells represented by lithium secondary cells, investigations have been made on techniques for inhibiting the size reduction caused by a volume change during charging. However, an investigation has not been sufficiently made on the thicknesses of the silicon oxide film and transition-metal oxide film. None of the conventional techniques can give a negative-electrode material for nonaqueous-electrolyte secondary cells which has satisfactory withstand overvoltage characteristics, which are one of important properties required of memory-backup power supplies. In the negative-electrode material (10) for nonaqueous-electrolyte secondary cells, the ratio of the thickness of the transition-metal oxide film (13) to the thickness of the silicon oxide film (12) is from 0.44 to less than 1. This constitution is intended to improve withstand overvoltage characteristics.
Abstract:
The present invention concerns a process for the manufacture of soft magnetic composite components comprising the steps of : die compacting a powder composition comprising a mixture of soft magnetic, iron or iron-based powder, the core particles of which are surrounded by an electrically insulating, inorganic coating, and an organic lubricant in an amount of 0.05 to 1.5 % by weight of the composition, said organic lubricant being free from metal and having a temperature of vaporisation less than the decomposition temperature of the coating; ejecting the compacted body from the die; heating the compacted body in a non reducing atmosphere to a temperature above the vaporisation temperature of the lubricant and below the decomposition temperature of the inorganic coating for removing the lubricant from the compacted body, and subjecting the obtained body to heat treatment at a temperature between 3000C and 600°C in water vapour. The invention also concerns soft magnetic composite components having a transverse rupture strength of at least 100 MPa, a permeability of at least 700 and a core loss at 1 Tesla and 400 Hz of at most 70W/kg.
Abstract:
Methods for sintering aluminum powder comprise providing aluminum powder and heating the aluminum powder in a nitrogen atmosphere containing a partial pressure of water vapor in the range of about 0.001 kPa to about 0.020 kPa to sinter the aluminum powder to a transverse rupture strength of at least about 13.8 MPa. The aluminum powder is not pressed together by a mechanical force that substantially deforms particles of said aluminum powder either prior to or during the step of heating. Articles comprising sintered aluminum powder. The sintered aluminum powder has a transverse rupture strength of at least about 13.8 MPa. The microstructure of the sintered aluminum powder contains no compositional concentration gradients indicative of the use of a sintering aid and no evidence of particle deformation having occurred by an application of a mechanical force prior to or during the sintering of the aluminum powder.