Abstract:
The invention relates to a spectral detector for measuring properties of light over portions of the electromagnetic spectrum including cholesteric liquid crystal material and switching means capable of varying the pitch of the helix of the cholesteric liquid crystal material, so that the position of the transmission wavelength band is adjusted in response to the switching means. The spectral detector may further include at least one light direction selecting structure for selecting light incident on the spectral detector having a certain angle of incidence. This invention also relates to a lighting system including the spectral detector of the invention.
Abstract:
An optical system comprising two lens cells, each lens cell comprising multiple lens elements, to provide imaging over a very wide image distance and within a wide range of magnification by changing the distance between the two lens cells. An embodiment also provides scannable laser spectroscopic measurements within the field-of-view of the instrument.
Abstract:
L'invention concerne un spectrographe à fente inclinée comprenant une source lumineuse (1), une fente d'entrée (3), un réseau (4), un détecteur (7) comportant une fenêtre à travers laquelle est transmis le faisceau lumineux diffracté par le réseau (4), une partie du faisceau lumineux diffracté générant des réflexions sur la fenêtre ou entre celle-ci et la surface sensible du détecteur (7). Selon l'invention, le spectrographe à fente inclinée comprend un moyen de compensation apte à compenser les pertes de résolution spectrale générées par les moyens d'inclinaison, ledit moyen de compensation comprenant la fente d'entrée (3, 9) qui est une fente d'entrée inclinée (9) de forme rectangulaire.
Abstract:
A multi-spectrum, multi-channel imaging spectrometer includes two or more input slits or other light input devices, one for each of two or more input channels. The input slits are vertically and horizontally displaced, with respect to each other. The vertical displacements cause spectra from the two channels to be vertically displaced, with respect to each other, on a single image sensor on a stationary image plane. The horizontal displacements cause incident light beams from the respective input channels to strike a convex grating at different respective incidence angles and produce separate spectra having different respective spectral ranges. A retroflective spectrometer includes a convex grating that, by diffraction, disperses wavelengths of light at different angles and orders approximately back along an incident light beam. A single concave mirror reflects both the input channel and the dispersed spectrum. A prism, set of mirrors, beam splitters or other optical element(s) folds the input channel(s) of a spectrometer to enable the input(s) to be moved away from the plane of the image sensor, thereby enabling a large camera or other device to be attached to the spectrometer without blocking the input(s). A mounting mechanism enables a curved optical element to be adjusted through lateral and transverse translations, without requiring a gimbal mount.
Abstract:
A sensing apparatus (10) consisting of more than one diode laser (12) having select lasing frequencies, a multiplexer (16) optically coupled to the outputs of the diode lasers with the multiplexer being further optically coupled to a pitch side optical fiber. Multiplexed laser light is transmitted through the pitch side optical fiber to a pitch optic (20) operatively associated with a process chamber (22) which may be a combustion chamber or the boiler of a coal or gas fired power plant. The pitch optic (20) is oriented to project multiplexed laser output through the process chamber. Also operatively oriented with the process chamber is a catch optic (24) in optical communication with the pitch optic to receive the multiplexed laser output projected through the process chamber. The catch optic (24) is optically coupled to an optical fiber which transmits the multiplexed laser output to a demultiplexer (28). The demultiplexer (28) demultiplexes the laser light and optically couples the select lasing frequencies of light to a detector (25) with the detector being sensitive to one of the select lasing frequencies.
Abstract:
A spectrophotometric system includes a zoom lens assembly that is mounted for axial translation relative to an integrating sphere. The zoom lens assembly includes first and second focusing lens mounted to an axially movable lens carrier. The lens carrier is positioned intermediate first and second sets of mirrors for reflecting/directing SCE and SCI beams toward fiber ports. A reference beam is also emitted from the integrating sphere and transmitted to a processor, thereby resulting in simultaneous tri-beam measurements. The disclosed spectrophotometric systems may also include an aperture plate detection assembly and/or a sample holder assembly that incorporates a dampening gas spring. The aperture plate detection system includes a detection disk that may include a plurality of pre-positioned sensors that interact with an activating ridge formed on the aperture plate for identification thereof.
Abstract:
An individualized modeling equation for predicting a patient's blood glucose values is generated as a function of non-invasive spectral scans of a body part and an analysis of blood samples from the patient, and is stored on a central computer. The central computer predicts a blood glucose value for the patient as a function of the individualized modeling equation and a non-invasive spectral scan generated by a remote spectral device. If the spectral scan falls within the range of the modeling equation, the predicted blood glucose level is output to the patient. If the spectral scan falls outside the range of the modeling equation, regeneration of the model is required, and the patient takes a number of noninvasive scans and an invasive blood glucose level determination. The computer regenerates the individualized modeling equation as a function of the set of spectral scans and corresponding blood glucose values.
Abstract:
A spectrometer (20) has a source of illumination radiation (21) having a plurality of spectral wavelengths, a bandpass filter (14), a dispersive beamsplitter (28), an illumination radiation rejection filter (34), and a spectrograph (32) each tunable in correspondences to a selected one of the plurality of spectral wavelengths of the source of illumination radiation. Any one of the tunable elements can comprise a holographic volume dispersion distraction grating and a mirror, both having fixed orientation displacement with respect to each other and being rotable for tuning around an avis corresponding to the interaction of the two planes coincident with the surfaces of said mirror and said grating.