Abstract:
An adjusting method of an X-ray apparatus has a reflection structure, wherein assuming that one end plane of the reflection structure is an inlet port of the X-ray and the other end plane is an outlet port of the X-ray, a pitch of the reflection substrates at the outlet port is wider than that at the inlet port. When the X-ray source exists at a position where a glancing angle at the time when the X-ray enters the inlet port exceeds a critical angle, an intensity of the X-ray emitted from each passage is detected. On the basis of the detected X-ray intensity, a relative position of the X-ray source and the reflection structure is adjusted.
Abstract:
A system for analyzing a sample is provided. The system includes an optical system capable of providing a one-dimensional beam and a two-dimensional beam. The system may include a beam selection device to select between providing a one-dimensional x-ray beam to the sample in a one-dimensional operation mode and a two-dimensional x-ray beam to the sample in a two-dimensional operation mode.
Abstract:
The present invention provides an X-ray optical apparatus including an X-ray reflective structure in which at least three reflective substrates are arranged with an interval and an X-ray which is incident into a plurality of X-ray passages whose both sides are put between the reflective substrates is reflected from the reflective substrate at both sides of the X-ray passage to be parallelized and emitted from the X-ray passage. When an edge of the X-ray reflective structure is an inlet of the X-ray and the other edge is an outlet of the X-ray, a pitch of the reflective substrates at the outlet is larger than a pitch at the inlet. Therefore, it is possible to efficiently parallelize the incident X-ray to be emitted with a simple structure.
Abstract:
Systems and methods are provided for staining tissue with multiple biologically specific heavy metal stains and then performing X-ray imaging, either in projection or tomography modes, using either a plurality of illumination energies or an energy sensitive detection scheme. The resulting energy-weighted measurements can then be used to decompose the resulting images into quantitative images of the distribution of stains. The decomposed images may be false-colored and recombined to make virtual X-ray histology images. The techniques thereby allow for effective differentiation between two or more X-ray dyes, which had previously been unattainable in 3D imaging, particularly 3D imaging of features at the micron resolution scale. While techniques are described in certain example implementations, such as with microtomography, the techniques are scalable to larger fields of view, allowing for use in 3D color, X-ray virtual histology of pathology specimens.
Abstract:
Provided is a technique for X-ray reflection, such as an X-ray reflecting mirror, capable of achieving a high degree of smoothness of a reflecting surface, high focusing (reflecting) performance, stability in a curved surface shape, and a reduction in overall weight. A silicon plate (silicon wafer) is subjected to thermal plastic deformation to form an X-ray reflecting mirror having a reflecting surface with a stable curved surface shape. The silicon wafer can be deformed to any shape by applying a pressure thereto in a hydrogen atmosphere at a high temperature of about 1300° C. The silicon plate may be simultaneously subjected to hydrogen annealing to further reduce roughness of a silicon surface to thereby provide enhanced reflectance.
Abstract:
A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.
Abstract:
A method for producing a reflective optical component for an EUV projection exposure apparatus, the component having a substrate having a base body, and a reflective layer arranged on the substrate, wherein the substrate has an optically operative microstructuring, comprises the following steps: working the microstructuring into the substrate, polishing the substrate after the microstructuring has been worked into the substrate, applying the reflective layer to the substrate. A reflective optical component for an EUV projection exposure apparatus correspondingly has a polished surface between the microstructuring and the reflective layer.
Abstract:
An x-ray analysis apparatus for illuminating a sample spot with an x-ray beam. An x-ray tube is provided having a source spot from which a diverging x-ray beam is produced having a characteristic first energy, and bremsstrahlung energy; a first x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam; and a second x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam to a second energy. The first x-ray optic may monochromate characteristic energy from the source spot, and the second x-ray optic may monochromate bremsstrahlung energy from the source spot. The x-ray optics may be curved diffracting optics, for receiving the diverging x-ray beam from the x-ray tube and focusing the beam at the sample spot. Detection is also provided to detect and measure various toxins in, e.g., manufactured products including toys and electronics.
Abstract:
A projection lens of an EUV-lithographic projection exposure system with at least two reflective optical elements each comprising a body and a reflective surface for projecting an object field on a reticle onto an image field on a substrate if the projection lens is exposed with an exposure power of EUV light, wherein the bodies of at least two reflective optical elements comprise a material with a temperature dependent coefficient of thermal expansion which is zero at respective zero cross temperatures, and wherein the absolute value of the difference between the zero cross temperatures is more than 6K.
Abstract:
A method is provided for characterizing spectrometric properties (e.g., peak reflectivity, reflection curve width, and Bragg angle offset) of the Kα emission line reflected narrowly off angle of the direct reflection of a bent crystal and in particular of a spherically bent quartz 200 crystal by analyzing the off-angle x-ray emission from a stronger emission line reflected at angles far from normal incidence. The bent quartz crystal can therefore accurately image argon Kα x-rays at near-normal incidence (Bragg angle of approximately 81 degrees). The method is useful for in-situ calibration of instruments employing the crystal as a grating by first operating the crystal as a high throughput focusing monochromator on the Rowland circle at angles far from normal incidence (Bragg angle approximately 68 degrees) to make a reflection curve with the He-like x-rays such as the He-α emission line observed from a laser-excited plasma.