Abstract:
To provide low scattering silica glass suitable as a material of an optical communication fiber.Silica glass, which has a fictive temperature of at least 1,000° C., and which has a void radius of at most 0.240 nm as measured by positron annihilation lifetime spectroscopy. A method for heat-treating silica glass, which comprises holding silica glass to be heat-treated in an atmosphere at a temperature of at least 1,200° C. and at most 2,000° C. under a pressure of at least 30 MPa, and cooling the silica glass at an average temperature-decreasing rate of at least 40° C./min during cooling within a temperature range of from 1,200° C. to 900° C. A method for heat-treating silica glass, which comprises holding silica glass to be heat-treated in an atmosphere at a temperature of at least 1,200° C. and at most 2,000° C. under a pressure of at least 140 MPa, and cooling the silica glass in an atmosphere under a pressure of at least 140 MPa during cooling within a temperature range of from 1,200° C. to 900° C.
Abstract:
A method to form quartz glass ingots of ultra low contamination and defect levels by firing a high-purity quartz form as the feedstock, wherein the quartz glass ingot is free-formed on a platen rotating concentrically with the feedstock quartz article.
Abstract:
An easily producible optical fiber preform which is drawn to an optical fiber having a core containing a sufficient concentration of alkali metal is provided. An optical fiber preform 10 is composed of silica-based glass and includes a core portion 20 and a cladding portion 30. The core portion 20 includes a first core portion 21 including a central axis and a second core portion 22 disposed on the perimeter of the first core portion 21. The cladding portion 30 includes a first cladding portion 31 disposed on the perimeter of the second core portion 22 and a second cladding portion 32 disposed on the perimeter of the first cladding portion 31. The core portion 20 contains an alkali metal at an average concentration of 5 atomic ppm or more. The concentration of the OH group in the perimeter portion of the first cladding portion 31 is 200 mol ppm or more.
Abstract:
An easily producible optical fiber preform which is drawn to an optical fiber having a core containing a sufficient concentration of alkali metal is provided. An optical fiber preform 10 is composed of silica-based glass and includes a core portion 20 and a cladding portion 30. The core portion 20 includes a first core portion 21 including a central axis and a second core portion 22 disposed on the perimeter of the first core portion 21. The cladding portion 30 includes a first cladding portion 31 disposed on the perimeter of the second core portion 22 and a second cladding portion 32 disposed on the perimeter of the first cladding portion 31. The core portion 20 contains an alkali metal at an average concentration of 5 atomic ppm or more. The concentration of the OH group in the perimeter portion of the first cladding portion 31 is 200 mol ppm or more.
Abstract:
A porous layer is formed by depositing a silica glass particle around a core rod. The porous layer is dehydrated. The dehydrated porous layer is sintered under a decreased pressure until the dehydrated porous layer becomes a translucent glass layer containing a closed pore. The translucent glass layer is vitrified under an ambient atmosphere including an inert gas other than a helium gas.
Abstract:
The process for the synthesis of a silica monolith comprises the following steps: hydrolysis of a silicon alkoxide in order to form a hydrolysis precursor followed by a condensation of said hydrolysis precursor in the presence of an organic solvent, in the presence of water and of a basic catalyst in order to form oligomeric clusters containing several silicon atoms; dispersion of said oligomeric clusters in a solution in order to form a sol; polymerization of the sol in order to obtain a gel via a first heat treatment, at a temperature below the boiling point of the constituents of the sol; drying of the gel via a second heat treatment; conversion of the gel to a xerogel via a third heat treatment; dehydration and densification of the xerogel until the silica monolith is obtained via a fourth heat treatment.
Abstract:
The present invention relates to an optical member for deep ultraviolet having a wavelength of 250 nm or shorter, containing a synthetic silica glass which does not substantially contain a halogen element, has a maximum OH group content of less than 10 ppm by weight, has contents of ODC (oxygen deficient centers) and E-prime center of each less than 1×1014 cm−3, does not substantially contain SiH and peroxy linkage, and has a fictive temperature of 1,050° C. or lower.
Abstract:
The present invention provides a synthetic silica glass for an optical member in which not only a fast axis direction in an optical axis direction is controlled, and a birefringence in an off-axis direction is reduced, but a magnitude of a birefringence in the optical axis direction is controlled to an arbitrary value, such that an average value of a value BR cos 2θxy defined from a birefringence BR and a fast axis direction θxy as measured from a parallel direction to the principal optical axis direction is defined as an average birefringence AveBR cos 2θxy, and when a maximum value of a birefringence measured from a vertical direction to the principal optical axis direction of the optical member is defined as a maximum birefringence BRmax in an off-axis direction, the following expression (1-1) and expression (2-1) are established: −1.0≦AveBR cos 2θxy
Abstract translation:本发明提供一种用于光学构件的合成石英玻璃,其不仅控制光轴方向上的快轴方向,并且减少偏轴双折射,而且在光轴上具有双折射的大小 方向被控制为任意值,使得从平行方向到主光轴方向测量的从双折射BR和快轴方向&yt; xy定义的值BR cos 2&amp; t s; xy的平均值被定义为 平均双折射度AveBR cos 2&amp; t s; xy,并且当从垂直方向测量到光学构件的主光轴方向的双折射的最大值被定义为在偏轴方向上的最大双折射率BRmax时,以下表达式(1 -1)和表达式(2-1):-1.0&nlE; AveBR cos 2&thetas; xy <0.0(1-1)0.0&nlE; BRmax&nlE; 1.0(2-1)。
Abstract:
The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.
Abstract:
According to an embodiment of the invention a method of manufacturing optical fiber cane comprises the steps of: (i) providing a core rod manufactured of relatively low viscosity glass; (ii) depositing SiO2 based soot around the core rod to form a soot preform, the soot being of relatively high viscosity material such that the softening point of the low viscosity glass is at least 200° C. lower than the viscosity of the high viscosity outer core region; and (iii) consolidating the soot of the soot preform by exposure to hot zone at temperatures of 1000° C.-1600° C. The soot is consolidated by heating the outer portion of the soot preform at a relatively fast heating rate, the heating rate being sufficient to densify the soot, so as to render the densified material with enough rigidity to confine the heated core rod and to prevent the heated core rod from puddling.