Abstract:
Method and systems are provided for in vivo, non-invasive detection of blood analytes. A portion of the sterile matrix located beneath a nail is illuminated by passing radiation from an optical source through the nail into the sterile matrix. Scattered, refracted, or reflected radiation emitted within the sampled volume is collected and analyzed to identify and quantify one or more selected analytes.
Abstract:
The present invention relates to different types of micromirror spectrometers using MEMS (Micro Electro Mechanical Systems) for various applications in the UV, VIS, NIR and MIR wavelength regions. The invention enables a wavelength selection using micro scanning mirror and integrated grating on a much smaller scale than previously encountered conventional diffraction grating monochromators. Especially small designs are obtained via simultaneous usage of collimation optics for both spatial filters, by using entrance and exit slit apertures, which are located very close together. Until now, the spatial filters themselves are not part of the miniaturization. The utilization of the precision from this technology allows for reproducible slits with defined geometries and surface roughness and accurate spatial classification towards the rotation axis of the diffraction grating. Therefore the assembly and adjustment effort of the monochromator is reduced. Due to the option of additional slit apertures, several independent monochromator channels with crossed beam paths can be created; whereas all remaining optical elements (diffraction grating and collimator optic) are utilized together. Such additional channels can serve, for example, as reference measurements of a radiation source, or enable the direct optical control of the grating torsion angle as a monitoring channel. The goal of the invention is to define a simple design and arrangement for monochromators based upon micromechanical elements, which avoids all disadvantages described above.
Abstract:
A small-spot imaging, spectrometry instrument for measuring properties of a sample has a polarization-scrambling element, such as a Lyot depolarizer, incorporated between the polarization-introducing components of the system, such as the beamsplitter, and the microscope objective of the system. The Lyot depolarizer varies polarization with wavelength. Sinusoidal perturbation in the resulting measured spectrum can be removed by data processing techniques or, if the depolarizer is thick or highly birefringent, may be narrower than the wavelength resolution of the instrument.
Abstract:
A hemispherical detector comprising a plurality of photodetectors arranged in a substantially contiguous array, the array being substantially in the shape of a half-sphere, the half-sphere defining a closed end and an open end, the open end defining a substantially circular face. Also provided is a method for constructing a hemispherical detector comprising the steps of making a press mold of the desired shape of the hemispherical detector, pouring a material into the press mold to form a cast, finishing the cast to remove any defects, coating the cast with a coating material, and attaching a plurality of photodetectors to the cast.
Abstract:
The spectrometer comprises, in combination: a slit (1) for the entry of a light beam; a collimator; a dispersion system (9); focusing means and a detector (13). The collimator comprises at least a first concave spherical mirror (3) and at least a first Schmidt plate (5) in an off-axis arrangement.
Abstract:
A multiwavelength selector for use with a high speed performance monitor, that uses a spatial wavelength separator, a configurable spatial filter, a focusing assembly, and a photodetector to select a wavelength or wavelengths from a plurality of incoming wavelengths, for further processing by said high speed performance monitor. The invention is intended for use in a fiber optic network application.
Abstract:
A new immunoassay system is provided for the detection of ligands or ligand binding partners in solution in a heterogeneous format. The invention relies upon the detection of back scattered light from an evanescent wave disturbed by the presence of a colloidal gold label brought to the interface by an immunological reaction. The evanescent wave existing at the interface in turn is the result of a totally internally reflected incident light wave. Placement of the detector at a back angle above the critical angle insures a superior signal-to-noise ratio. Apparatus and methods for scanning, detecting and manipulating light including a scattered total internal reflectance immunoassay system are provided.
Abstract:
A confocal measuring microscope including a spectrometer and autofocus system sharing common optical elements in which the intensity of light entering the spectrometer from a particular spot on a workpiece is used to determine a focus condition for the same spot. The microscope includes at least one light source, an illumination field stop, and a microscope objective that images the stop onto a workpiece supported by a movable platform. The objective also forms an image of the illuminated portion of the object. An aperture in a second stop and intersecting the image plane passes light from part of the image to the spectrometer, while viewing optics are used to view the image. In one embodiment, a detector is placed at the zero order position, while in another embodiment a laser is placed at the zero order position. In the later embodiment an integrator circuit connected to the detector array replaces the zero order detector for measuring the total intensity of light entering the spectrometer. A best focus condition occurs when the total intensity is a maximum for a positive confocal configuration, i.e. where source and detector are on opposite sides of their respective field stops from said workpiece, and a minimum for a negative confocal configuration, i.e. where the source and workpiece are on the same side of a reflective illumination field stop with aperture. The movable platform may be scanned axially to achieve and maintain object focus as the object is scanned transversely.
Abstract:
A wavelength discriminator designed to collect broadband, multiple wavelength input energy, to isolate specific narrow bands of interest, and to image such narrow bands of interest upon closely spaced, separate detectors. This discriminator comprises optical devices (22, 18) for directing incoming radiant energy of a certain quality and involving a wide range of wavelengths through first (26a) and second (26b) wavelength selective reflectors separated by a medium that transmits the wavelengths of interest. The wavelength selective reflectors in accordance with this invention are in a non-parallel configuration and disposed in a double pass geometrical arrangement wherein energy of a certain wavelength reflected from the second wavelength selective reflector (26b) passes back through the first wavelength selective reflector (26a), with the energy from the first and second wavelength reflectors thereafter being directed onto respective detectors (32aand 32b). An embodiment involving a third wavelength selective reflector (26c) grouped with the first and second reflectors may be utilized, wherein energy of a different wavelength reflected from the third wavelength selective reflector passes back through both the second and first wavelength selective reflectors, with the selected wavelengths thereafter falling upon three separate detectors (32a, 32band 32c) of the array.
Abstract:
To provide a confocal displacement sensor that can prevent deterioration in measurement accuracy due to a spherical aberration of an optical member. The confocal displacement sensor includes a light source for light projection configured to generate light having a plurality of wavelengths, a pinhole configured to emit detection light by allowing the light emitted from the light source for light projection to pass, an optical member configured to generate an axial chromatic aberration in the detection light emitted via the pinhole and converge the detection light toward the measurement object, a measurement control section configured to calculate displacement of the measurement object on the basis of, in the detection light irradiated on the measurement object via the optical member, detection light passed through the pinhole by being reflected while focusing on the measurement object, and a head housing configured to house the pinhole and the optical member. The optical member includes a first diffraction lens configured to diffract the detection light and a first refraction lens configured to refract the detection light. The first refraction lens is disposed with a non-diffraction surface exposed from the head housing.