Abstract:
A non-invasive method for determining a concentration of a gas component in a gas mixture contained in a spacing of a glass unit having at least two glass sheets spaced apart from each other and forming said spacing. One or more light beams is applied at an angle to the surface of said glass unit, wherein the wavelength of the emitted light beam is varied around or over the at least one absorption line of the interest gas component. The light beams transmitted through or reflected from at least one surface or interface locating at the opposite side of the spacing are collected by a detector and non-linear variations in the intensity of the t transmitted or reflected light beams over an absorption line of the interest gas is then component determined. The concentration of the gas component to be measured is determined based on said non-linear variations in the intensity.
Abstract:
Das Verfahren und die Vorrichtung dienen zur Plasmabehandlung von Werkstücken. Das Werkstück wird in eine zumindest teilweise evakuierbare Kammer einer Behandlungsstation eingesetzt. Die Plasmakammer ist von einem Kammerboden, einem Kammerdeckel sowie einer seitlichen Kammerwandung begrenzt. Der Verfahrensablauf wird mindestens zeitweilig optisch überwacht. Bei der optischen Überwachung werden Spektrallinien der Strahlung des Plasmas oberhalb von 500 Nanometer ausgewertet. Bevorzugt erfolgt die Auswertung für Frequenzen oberhalb von 700 Nanometer.
Abstract:
The invention relates to the instantaneous identification and characterisation of samples with no prior treatment, using the dynamic combination of laser ablation and mathematical algorithms. The method consists in analysing a single laser pulse in order to obtain a spectrum of the sample, which is compared with a dynamic spectral database using a neural network that allows a large amount of data to be handled in a very short space of time with 100% sensitivity and specificity. The identification and characterisation technique is quick and direct and allows the correlation of analytical data with organoleptic properties or quality properties, as well as the determination of contaminating, pathogenic or bioactive compounds and substances present in samples, in all states of the material and without any form of prior preparation.
Abstract:
Méthode d'analyse de particules composites pour déterminer leur stoechiométrie, comprenant les étapes suivantes : b1) par un tir laser (10) on forme un plasma (12) à partir d'un aérosol contenant les particules à analyser; b2) on acquiert un spectre d'émission (18) provenant du plasma (12) avec un spectromètre optique (68) équipé d'un détecteur (66,70); et c) à partir des spectres d'émission (18), on détermine la stoechiométrie des particules, en calculant la proportion S ou Sa/b entre deux éléments a,b, par l'équation; dans celle-ci, le facteur N a,I tot/N b,I tôt est déterminé par l'équation :Système d'analyse permettant la mise en oeuvre de cette méthode. Avantageusement, la stoechiométrie est déterminée quasiment en temps réel, permettant l'utilisation pour la conduite de procédés. Procédé de fabrication de particules par pyrolise laser, dans lequel la stoechiométrie est contrôlée suivant la méthode d'analyse citée ci-dessus.
Abstract:
An ultra-portable wireless Atomic Emission Spectrometer (AES) for use in elemental analysis in weight percentages of a broad range of conducting metals and their alloys has been devised. It comprises a Main Control Unit (MCU) (2) housing a personal computer (PC) (3) and other solid-state electronic controls (4), connected remotely to a Probe (1) for carrying around by an operator to analyse metallic objects / samples, the spectrometer's Optical Chamber being housed in the said Probe (2), and spectral information gathered at the electrode, which is housed in the said Probe (1), is transmitted to the said MCU (2) with means (5) for transmission and reception of digital spectral information, wherein spectral information is further processed and converted to elemental analysis results. The said Main Control Unit (MCU) (2) and the said Probe (1) is communicated wirelessly/remotely during the transmission and reception of the said elemental analysis information. The said Main Control Unit (MCU) (2) comprises a plurality of solid-state electronic control elements (4), a computer (3) integrated to the said MCU (2), a digital display unit (6) for displaying the results of the said elemental analysis, and transmitter and receiver means (5) for transmitting and receiving signals during the elemental analysis. The said Probe (1) having its optical chamber rigidly coupled to a CCD and CCD Camera comprises a plurality of solid-state electronic control elements (4) responsible for discharge of electrons, and transmitter and receiver means (5) for transmitting and receiving signals durin the elemental anal sis to the said Main Control Unit MCU 2.
Abstract:
A laser induced breakdown spectroscopy (LIBS) system uses discrete optical filters for isolated predetermined spectral components from plasma light created by ablation of a sample. Independent detection elements may be used for detecting the magnitude for each spectral component. A first spectral component may include a characteristic wavelength of the sample, while a second spectral component may be a portion of a background continuum. The filters may include volume Bragg gratings and the detectors may be photodiodes. A detector that detects plasma light remaining after the isolation of the predetermined spectral components may be used together with a signal acquisition controller to precisely control the initiation and termination of signal acquisition from each of the detection elements. The system may also have optics including a collimating lens through which passes both the initial plasma light and the isolated spectral components.
Abstract:
Die Erfindung betrifft ein Spektrometer zur Untersuchung der optischen Emission einer Probe, mit einer Anregungsquelle, einem Eintrittsspalt und einem dispersiven Element, dass das Spektrum des in der Anregungsquelle erzeugten Lichts in einer Ebene auffächert, und mit Festkörper-Sensoren mit einer oder mehreren Zeilen, die zur Auswertung der spektralen Information im Bereich der Fokalkurve des Strahlengangs angeordnet sind, wobei die Sensoren oberhalb oder unterhalb der Ebene angeordnet sind und die spektrale Emission mit Spiegeln auf die Sensoren umgelenkt und fokussiert wird, wobei die reflektierende Oberfläche der Spiegel in einer Krümmungsrichtung asphärisch geformt ist.
Abstract:
An apparatus and a method for optically analyzing a sample are provided. The apparatus includes a first optical device that transmits a narrow waveband of light and has a first filter and a first monochromator that provide different paths for the narrow waveband of the light. The apparatus may also include a light source that generates the light as broadband excitation light, in which case the first optical device transmits a narrow waveband of the broadband excitation light through the first filter or the first monochromator. Further, the apparatus may include a second optical device that directs the narrow waveband of the broadband excitation light onto the sample and receives emission light from the sample, a third optical device that transmits a narrow waveband of the emission light, and a detector that converts the narrow waveband of the emission light into an electrical signal.
Abstract:
A system is described that combines an optical spectrometer and a particle analysis spectrometer for simultaneous and/or sequential analysis of a sample placed in a sample chamber. A laser resonator generates a light beam on the sample in the sample chamber to produce a plasma formation and an aerosol formation. The optical spectrometer (spectrophotometer) analyzes a plasma formation generated from the sample surface of the sample, qualifies and/or quantifies and records chemical data of the sample. The particle analysis spectrometer analyzes an aerosol formation generated from the sample in the sample chamber, and qualifies and/or quantifies and records data of the sample. The combination of the optical spectrometer and the particle analysis spectrometer in the system enables simultaneous and/or sequential analysis, qualification and/or quantification, and recording of the chemical and physical data derived from the transfer of laser energy into a solid, liquid or gas.