Abstract:
The invention relates to an aircraft comprising a fuselage (1), a plurality of propeller units (3) that can pivot in relation to the fuselage (1), and wings (5) that can pivot at least partially in relation to the fuselage (1) and independently of the propeller units (3).
Abstract:
The present invention provides novel inflatable and rigidizable support elements, and methods of manufacture and use thereof. In particular, the present invention provides inflatable and rigidizable support elements rapidly inflated and rigidized using an acrylic adhesive and UV light generated by combustion, which find use, for example, in rapidly deploying and supporting the wing of an aerial vehicle and wind turbine towers.
Abstract:
Embodiments of the present invention provide an alternative distributed airborne transportation system. In some embodiments, a method for distributed airborne transportation includes: providing an airborne vehicle with a wing and a wing span, having capacity to carry one or more of passengers or cargo; landing of the airborne vehicle near one or more of passengers or cargo and loading at least one of passengers or cargo; taking-off and determining a flight direction for the airborne vehicle; locating at least one other airborne vehicle, which has substantially the same flight direction; and joining at least one other airborne vehicle in flight formation and forming a fleet, in which airborne vehicles fly with the same speed and direction and in which adjacent airborne vehicles are separated by distance of less than 100 wing spans.
Abstract:
A vertical takeoff and landing aircraft includes rotors that provide vertical and horizontal thrust. During forward motion, the vertical lift system is inactive. A lift fan mechanism positions the fan blades of the aircraft in a collapsed configuration when the vertical lift system is inactive and positions the fan blades of the aircraft in a deployed configuration when the vertical lift system is active.
Abstract:
A combined submersible vessel and unmanned aerial vehicle preferably includes a body structure, at least one wing structure, at least one vertical stabilizer structure, and at least one horizontal stabilizer structure. A propulsion system is coupled to the body structure and is configured to propel the flying submarine in both airborne flight and underwater operation. Preferably, the propulsion system includes a motor, a gearbox coupled to the motor and configured to receive power generated by the motor and provide variable output power, a drive shaft coupled to the gearbox and configured to transfer the variable output power provided by the gearbox, and a propeller coupled to the drive shaft and configured to accept power transferred to it from the drive shaft. The propeller is further configured to rotate and propel the flying submarine in both an airborne environment and in an underwater environment.
Abstract:
An aerial vehicle including self-autonomous deployable arms and methods of deploying the vehicle are disclosed. The arms may include patterns located thereon that allow the arms to transition between wrapped, flat, and deployed configurations autonomously without the need for direct intervention by a user.
Abstract:
A combined submersible vessel and unmanned aerial vehicle preferably includes a body structure, at least one wing structure, at least one vertical stabilizer structure, and at least one horizontal stabilizer structure. A propulsion system is coupled to the body structure and is configured to propel the flying submarine in both airborne flight and underwater operation. Preferably, the propulsion system includes a motor, a gearbox coupled to the motor and configured to receive power generated by the motor and provide variable output power, a drive shaft coupled to the gearbox and configured to transfer the variable output power provided by the gearbox, and a propeller coupled to the drive shaft and configured to accept power transferred to it from the drive shaft. The propeller is further configured to rotate and propel the flying submarine in both an airborne environment and in an underwater environment.
Abstract:
The present invention discloses an unmanned aerial vehicle capable of transforming its shape, comprising a) a control apparatus b) one or more propellers being fixed to the control apparatus, c) a multitude of flaps which are foldable reversibly from an open to a closed position, wherein the flaps provide i) in open position about a disc shape which is about in parallel to the plane of the rotating propeller, and ii) in closed position a shuttlecock shape, wherein, at least one of the flaps comprises a battery recharge element, such as a solar panel, photovoltaic element or elements, an electromagnetic harvesting element, a thermoelectric generator and/or a solar thermoelectric generator. The present invention relates also to a rotating disc being suitable for the vehicle, as well as the use of the vehicle and the rotating disc.
Abstract:
A vertical take-off and landing (VTOL) aircraft according to an aspect of the present invention comprises a fuselage, an empennage having an all-moving horizontal stabilizer located at a tail end of the fuselage, a wing having the fuselage positioned approximately halfway between the distal ends of the wing, wherein the wing is configured to transform between a substantially straight wing configuration and a canted wing configuration using a canted hinge located on each side of the fuselage. The VTOL aircraft may further includes one or more retractable pogo supports, wherein a retractable pogo support is configured to deploy from each of the wing's distal ends.
Abstract:
A vertical take-off and landing (VTOL) aircraft is provided and includes a fuselage, inboard wings extending from opposite sides of the fuselage to define a support plane and engine nacelles disposed along the wings. Each of the wings includes ground alighting elements and a variable geometry such that a portion of the ground alighting elements are alignable with the support plane during in-flight conditions and displaceable from the support plane.