Abstract:
An unmanned aerial vehicle system according to the present invention includes a housing (2000) mounted on a vehicle (10) and having an inner space, the housing provided with a launching unit, an unmanned aerial vehicle (1000) accommodated in the housing and configured to be launched from the housing when a driving state of the vehicle meets a preset condition, wing units (1210) mounted to the unmanned aerial vehicle and configured to allow the flight of the unmanned aerial vehicle in response to the launch from the housing, an output unit disposed on the unmanned aerial vehicle, and a controller configured to control the wing units to move the unmanned aerial vehicle to a position set based on information related to the driving state when the unmanned aerial vehicle is launched, and control the output unit to output warning information related to the driving state.
Abstract:
Disclosed is a configuration to control automatic return of an aerial vehicle. The configuration stores a return location in a storage device of the aerial vehicle. The return location may correspond to a location where the aerial vehicle is to return. One or more sensors of the aerial vehicle are monitored during flight for detection of a predefined condition. When a predetermined condition is met a return path program may be loaded for execution to provide a return flight path for the aerial vehicle to automatically navigate to the return location.
Abstract:
Le drone comprend un système de pilotage automatique (24) qui reçoit des instructions internes et/ou externes de pilotage, ainsi que des données d'attitude (ϕ*, θ*), d'altitude (z*) et de vitesse (V*) instantanées délivrées par des capteurs (48, 50, 58, 60, 62, 68, 70). Des circuits de calcul de consignes (36, 38, 40) calculent, en fonction d'un modèle du comportement aérodynamique du drone en vol, des consignes d'angles de roulis (ϕ) et/ou de tangage (θ) et/ou des consignes de vitesse (V) et/ou des consignes d'altitude (z) correspondant aux instructions internes et/ou externes de pilotage reçues. Des circuits de correction et de contrôle (44, 44, 52, 54, 64) commandent le système de propulsion (28) et les servomécanismes (30) des gouvernes du drone. Un système (26) permet en outre de générer en interne des instructions de pilotage pour des modes de vol autonome tels que décollage automatique ou atterrissage automatique.
Abstract:
A method of tracking a moving target from an air vehicle comprising determining an estimated location and speed of a moving target and instructing an air vehicle to follow the moving target, wherein the method further comprises: a) determining a detectability zone surrounding the moving target; b) calculating at least one reference location for the air vehicle; c) generating at least one guidance reference to command the air vehicle for tracking the moving target, wherein the guidance reference comprises any combination of one or more of at least: c.1) a desired course; c.2) a desired speed; c.3) a desired flying altitude; and wherein the method further comprises: d) instructing the air vehicle to fly according to the generated guidance reference; wherein the determination of the detectability zone, the calculation of a reference location and the generation of the guidance reference are performed according to at least one behavior policy.
Abstract:
Disclosed is a method and apparatus for detecting cloud features. The method comprises: obtaining image data (e.g. using a camera), the image data defining a plurality of pixels and, for each pixel, a respective luminance value; defining one or more intervals for the luminance values of the pixels; partitioning the image data into one or more image segments (502-508), each respective image segment (502-508) containing pixels having a luminance value in a respective interval; and classifying, as a cloud feature, each image segment (502-508) containing pixels having luminance value greater than or equal to a threshold luminance value (LT).
Abstract:
Known towed bodies can be maneuvered in all three dimensions but, as pure airborne targets, do not have a large load capacity. The towed body (01) according to the invention is designed for bearing large loads and serves exclusively scientific and commercial measurement purposes. To achieve very good aerodynamic properties, the towed body has a fuselage (02) comprising a triangular transverse plane (15), wherein the upper face (18) is designed to be wide and the lower face (19) is designed to be narrow, and comprising a curvature (23) only on the upper face (18), whereas the lower face (19) runs straight. The wings (03) are bent and consist of two segments (07, 08). Small segments (07) are arranged at the bottom of the fuselage (02), which small segments point downwards and stabilise the towed body (01), large segments (08) are connected to the small segments (07), which large segments point upwards and generate lift. In the front and middle region of the fuselage (02) and in the small segments (07) there are load chambers (10, 11) which can have user-friendly segment chambers (22). The unit chamber (09) comprising various units (27), such as a position-stabilising gyroscope system, an anti collision module, accumulators, a generator and an emergency parachute system (25), is located in the rear region of the towed body (01).
Abstract:
The present invention relates; - to a drone comprising a fuselage (1) provided with carrying means (11, 12) capable of allowing a belly-to-ground flight position and an inverted flight position, at least one propulsion means (2), autonomous navigation instruments and an axial compartment (10) forming a recess incorporated into an upper part of the fuselage in order to receive a parachutist (h) in the lying position, avionics provided with programmable control means coupled to the autonomous navigation instruments and means for releasing said parachutist controlled by said avionics, characterised in that said release means are designed and intended to ensure the release of said parachutist in the inverted flight position, and, - to a piece of airborne intervention equipment.
Abstract:
An intelligence, surveillance, and reconnaissance system and associated operating method is disclosed including a ground station and one or more autonomous aerial vehicles. Each automomous vehicle is adapted to a) self-monitor a plurality of environment data; b) calculate, based at least in part upon the environment data, a soft wall radius from which it can return to the command and control interface station; c) receive a destination position to which it is commanded to fly; d) determine if the destination position is beyond the soft wall radius; and e) communicate an alert to the command and control interface station if the destination position is beyond the soft wall radius.
Abstract:
A method (300, 500, 600) and an apparatus for controlling an unmanned aerial vehicle (UAV) (110) are provided. The UAV (110) comprises at least one rotor. The method (300, 500, 600) includes: receiving a take-off preparatory signal instructing the UAV (110) to enter into a take-off preparatory state; controlling the at least one rotor of the UAV (110) to rotate at a preset rotation speed in response to the take-off preparatory signal, wherein the preset rotation speed is smaller than a rotation speed that enables the UAV (110) to hover in the air; and controlling the UAV (110) to enter into a hovering mode under a predetermined condition, wherein the UAV (110) is controlled to hover at a predetermined height in the hovering mode.
Abstract:
An autonomous vehicle platform and system for selectively performing an in-season management task in an agricultural field while self-navigating between rows of planted crops, the autonomous vehicle platform having a vehicle base with a width so dimensioned as to be insertable through the space between two rows of planted crops, the vehicle base having an in-season task management structure configured to perform various tasks, including selectively applying fertilizer, mapping growth zones and seeding cover crop within an agricultural field.