Abstract:
Microstructure plating systems and methods are described herein. One method includes depositing a plating-resistant material between a microstructure and a bonding layer, wherein the microstructure comprises a plating process base material and immersing the microstructure in a plating solution.
Abstract:
A chip package includes a semiconductor chip, an interposer, a polymer adhesive supporting layer, a redistribution layer and a packaging layer. The semiconductor chip has a sensor device and a conductive pad electrically connected to the sensing device, and the interposer is disposed on the semiconductor chip. The interposer has a trench and a through hole, which the trench exposes a portion of the sensing device, and the through hole exposes the conductive pad. The polymer adhesive supporting layer is interposed between the semiconductor chip and the interposer, and the redistribution layer is disposed on the interposer and in the through hole to be electrically connected to the conductive pad. The packaging layer covers the interposer and the redistribution layer, which the packaging layer has an opening exposing the trench.
Abstract:
A MEMS gyroscope is disclosed herein, wherein the MEMS gyroscope comprised a magnetic sensing mechanism and a magnetic source that is associated with the proof-mass. The magnetic sensing mechanism is disposed at a location wherein the magnetic field gradient from the magnetic source is maximum.
Abstract:
A wafer structure includes a first wafer stack and a first bonding layer disposed on the first wafer stack. The wafer structure further includes a second wafer stack that includes a first surface and a second surface opposing the first surface. A second bonding layer is disposed on the second surface and is in contact with the first bonding layer. The second wafer stack comprises through-silicon-vias (TSVs) that extend from the first surface to the second bonding layer. A seed layer is disposed on the first surface and is in contact with the TSVs.
Abstract:
A method of making a MEMS gyroscope is disclosed herein, wherein the MEMS gyroscope comprised a magnetic sensing mechanism on a magnetic sensor wafer and a magnetic source on a MEMS wafer that further comprises a proof-mass.
Abstract:
A MEMS gyroscope is disclosed herein, wherein the MEMS gyroscope comprised plurality of movable portions that are capable of moving in response to angular velocity and a plurality of magnetic sensing mechanisms for measuring movements of the movable portions.
Abstract:
A method of using a MEMS gyroscope is disclosed herein, wherein the MEMS gyroscope comprised a magnetic sensing mechanism. A magnetic field is generated by a magnetic source, and is detected by a magnetic sensor. The magnetic field varies at the location of the magnetic sensor; and the variation of the magnetic field is associated with the movement of the proof-mass of the MEMS gyroscope. By detecting the variation of the magnetic field, the movement and thus the target angular velocity can be measured.
Abstract:
A method of using a MEMS gyroscope is disclosed herein, wherein the MEMS gyroscope comprised a magnetic sensing mechanism. A magnetic field is generated by a magnetic source, and is detected by a magnetic sensor. The magnetic field varies at the location of the magnetic sensor; and the variation of the magnetic field is associated with the movement of the proof-mass of the MEMS gyroscope. By detecting the variation of the magnetic field, the movement and thus the target angular velocity can be measured.
Abstract:
A nano-structure (100, 100′) includes an oxidized layer (14′), and at least two sets (24, 24′) of super nano-pillars (20) positioned on the oxidized layer (14′). Each of the at least two sets (24, 24′) of super nano-pillars (20) includes a plurality of super nano-pillars (20), where each set (24, 24′) is separated a spaced distance from each other set (24, 24′).
Abstract:
A method for producing a micromechanical component is proposed, a trench structure being substantially completely filled up by a first filler layer, and a first mask layer being applied on the first filler layer, on which in turn a second filler layer and a second mask layer are applied. A micromechanical component is also proposed, the first filler layer filling up the trench structure of the micromechanical component and at the same time forming a movable sensor structure.