Abstract:
A periodically reversed gas flow method and apparatus for ozone production is described. Because moisture reduces the efficiency of most ozonizers, moisture is removed from an oxygen containing fluid before it passes through the ozonizer and the moisture is returned to the oxygen and ozone containing fluid after the ozonizer. At least two moisture adsorbent material columns are used so that the oxygen containing fluid is first passed serially through the two columns with the ozonizer interposed and then periodically reversed to pass serially through the three components in the opposite direction so that at least one column is always in an adsorbent cycle while at least another column is always in a desorber cycle. The pressure of the oxygen containing fluid may be increased immediately upstream of the adsorber column and reduced immediately downstream of the adsorber column, for increased efficiency. The heat of adsorption is transferred from the adsorber column to the desorber column to provide the heat of desorption at the latter column, with the ozonizer serially interposed; the coolant fluid flow is preferably cocurrent to the oxygen fluid flow and reversed everytime that the oxygen containing fluid flow is reversed.
Abstract:
An ozone liquid converter (1) which converts a liquid held in a sealed vessel (3) provided with a septum (51), into ozone liquid including: a liquid tight passage (5) in which to both ends of a passage main body (7) thereof, there are respectively connected insertion needles (35,33) for liquid discharge and liquid return in an internally communicating state; an ozone gas entrapment part (11) which is arranged part way along the liquid tight passage (5); and an ozone gas discharge part (27) which is arranged part way along the liquid tight passage (5), and on a downstream side of the ozone gas entrapment part (11), and which discharges ozone gas which has not dissolved in the liquid, to the outside of the pathway; wherein said liquid tight passage (5) and said sealed vessel (3) are connected by puncturing said septum (51) with said insertion needles (35, 33), and there is formed a liquid circulation passage in which liquid flowed out from said sealed vessel (3) passes through said liquid tight passage (5) and returns to said sealed vessel (3), and ozone is dissolved, in said ozone gas entrapment part (11), in the liquid which has flowed out from said sealed vessel (3) to said liquid tight passage (5), and converted to ozone liquid, and after discharging the ozone gas what has not been dissolved in said ozone gas discharge part (27), said ozone liquid is returned to inside said sealed vessel (3), to thereby convert the liquid contained in said sealed vessel into ozone liquid.
Abstract:
PROBLEM TO BE SOLVED: To provide a system for monitoring and suppressing arcing between the first and second electrodes of an electrokinetic system. SOLUTION: Current (or voltage) corresponding to the electrokinetic system is monitored for regulating first count and second count. Every time the monitored value reaches the threshold, the first count is increased each time. Every time the first count reaches the first count threshold, the electrokinetic system is temporarily shut down for a specified period of time, the second count is increased, and the first count is re-initialized. The electrokinetic system is re-started after a predetermined period. When the second count reaches the second count threshold, the electrokinetic system is shut down till when the reset state is satisfied. COPYRIGHT: (C)2005,JPO&NCIPI