Abstract:
A dual pivot door hinge assembly for a side door system of a vehicle includes a body side-mounting bracket adapted to be connected to a vehicle body of the vehicle. The dual pivot door hinge assembly also includes a door side-mounting bracket adapted to be connected to a side door of the side door system of the vehicle. The dual pivot door hinge assembly includes at least one load arm pivotally connected to the body side-mounting bracket to form a first pivot axis and pivotally connected to the door side-mounting bracket to form a second pivot axis. The dual pivot door hinge assembly further includes a connecting member operatively interconnecting the first pivot axis and second pivot axis to allow the side door to remain parallel to a side of the vehicle body as the side door is pivoted radially outward and longitudinally.
Abstract:
A power drive assembly (110) for controlling movement of a closure panel (102, 105) of a vehicle includes a closure panel (102, 105) that moves relative to the vehicle between open and closed positions, and a latch (108, 115) for cinching the closure panel (102, 105) to the vehicle. The drive assembly (110) includes an actuator (134), a first torque output (136) coupled to effect movement of the closure panel (102, 105), a second torque output (138) coupled to the latch (115), and a clutch assembly (144, 150) coupled between the actuator (134) and the torque outputs (136, 138) for selectively transferring torque between the actuator (134) and the torque outputs (136, 138).
Abstract:
A drive unit for a power operated vehicle closure has a track, a guide moveable along the track, a link attached to the guide at one end and adapted to be attached to the vehicle closure at the opposite end, and a motor assembly for moving the guide along the track. The motor assembly has an electric motor and a speed reducer driven by the electric motor that has a first stage and a second stage. The first stage includes a belt drive and the second stage is a spur gear set. Alternatively the first stage is a worm gear and a mating helical gear. The worm gear preferably has a high lead angle and a high number of leads. The speed of the electric motor is reduced to about 1000 rpm or less in the first stage permitting the use of spur gears in the second stage while retaining quiet operation.
Abstract:
A snow thrower (10) includes a rotatable wheel (12) for collecting the snow and a chute (14) for throwing the snow away from the snow thrower (10). The snow thrower (10) includes a motor (22) and a battery (24) connected thereto for providing power to the motor (22), which in turn drives a drive belt (28) to rotate the rotatable wheel (12). The battery (24) may be removed and replaced by sliding same out of the thrower housing (16), and includes spring biased contacts between the housing (16) and battery terminals to cause electrical connection therebetween.
Abstract:
A snow thrower (10) includes a rotatable wheel (12) for collecting the snow and a chute (14) for throwing the snow away from the snow thrower (10). The snow thrower (10) includes a motor (22) and a battery (24) connected thereto for providing power to the motor (22), which in turn drives a drive belt (28) to rotate the rotatable wheel (12). The battery (24) may be removed and replaced by sliding same out of the thrower housing (16), and includes spring biased contacts between the housing (16) and battery terminals to cause electrical connection therebetween.
Abstract:
An electromechanically operated door having a control and regulation system for the door, the door for being driven by an electric motor, the movement of the door being controlled by sensors. The control and regulation system is equipped with a microprocessor control. In addition to the normal path of data to the microprocessor control, a dual redundancy is achieved, in that there is a safety monitoring system which receives the same safety-related information as the microprocessor control. This safety monitoring system, for its part, is capable of detecting a fault, i.e. if the microprocessor control system has not shut off the door, the door is shut off by the safety monitoring system, which for its part reports any faults which occur in the system to a fault detection unit, and here again, by means of a redundant shutdown unit, brings the connected motor and thus the door to an immediate stop. In addition to the automatic verification of the safety-related functions, manual verification of the safety functions is also possible. Also contemplated is a control and regulation system, having the above features, for a door.
Abstract:
A gate opening and closing apparatus for moving a gate between a gate closed position which covers an access opening and a gate opened position. The apparatus comprises an electric motor for driving the gate between the open position and the closed position. A connecting arrangement connects the electric motor to the gate in order to enable powered movement of the gate between the gate opened and gate closed positions. A control unit in the form of a microprocessor control unit is operatively connected to the electric motor for control of the same and hence control of the movement of the gate. The gate normally remains unlocked at the closed position and is only locked when a force is applied to the gate tending to move same to the open position. In one embodiment, a positive locking mechanism, such as a solenoid lock may be provided and which is automatically locked when an opening force is applied to the gate. In another embodiment, the gate is not positively locked and the electric motor applies a closing force to the gate to overcome any effort of an opening movement. The gate opening and closing mechanism is uniquely constructed in that there is no gear box which would otherwise preclude a manual opening of the gate in the event of emergency.
Abstract:
An automatic door includes a control program microprocessed in commensuration with the requirements of a servo-controlled control network of an automatic door and recorded in a read only memory (ROM), whereby upon an initiation by an electric current, a central processing unit (CPU) will give series of instructions to automatically sense the location of the automatic door and will calculate the errors after finishing each operating cycle of the moving door for re-setting the positioning point for each operation mode of a next door movement, and will always monitor the running speed of a motor for driving the door to be compared with a pre-determined value memoried in the ROM so as to exert a warning alarm and to temporarily stop or finally stop a door for safety purpose.
Abstract:
What is disclosed is a new and novel fume hood sash operator system and a fume hood containing such a system. The sash operator is constructed to operate with a belt drive and a clutch mechanism so that the sash member can be stopped, started, moved up or down to accommodate changes in the flow or air moving through the hood structure and to provide a safe, durable, energy-saving sash operating system.