Abstract:
A terahertz-wave generating element includes a waveguide including an electro-optic crystal; an optical coupling member that extracts a terahertz wave, which is generated from the electro-optic crystal as a result of light propagating through the waveguide, to a space; and at least two electrodes that cause a first-order electro-optic effect in the electro-optic crystal by applying an electric field to the waveguide so as to change a propagation state of the light propagating through the waveguide. A crystal axis of the electro-optic crystal of the waveguide is set such that the terahertz wave generated by a second-order nonlinear optical process and the light propagating through the waveguide are phase-matched.
Abstract:
An apparatus for concentrating light and associated method of use is disclosed. This apparatus includes a first outer wall having an anterior end, a posterior end, an inner surface and an outer surface, the inner surface defining an interior portion, the interior portion having an anterior end and a posterior end, and a light source disposed within the interior portion. The first outer wall has an opening in the posterior end, the opening having an opening diameter. The interior portion has a substantially frusto- conical shape and has a cross-sectional diameter at the opening equal to the opening diameter and a second cross-sectional diameter near the anterior end that is less than the opening diameter and the inner surface is photo-reflective. The light passes through a sample through an aperture and a collector lens or a second outer wall. A transmission diffraction grating may be utilized.
Abstract:
A spectral characteristic obtaining apparatus including a light irradiation unit configured to emit light onto a reading object; a spectroscopic unit configured to separate at least a part of diffused reflected light from the light emitted onto the reading object by the light irradiation unit into a spectrum; and a light receiving unit configured to receive the diffused reflected light separated into the spectrum by the spectroscopic unit and to obtain a spectral characteristic. The light receiving unit is configured to be a spectroscopic sensor array including plural spectroscopic sensors arranged in a direction, and the spectroscopic sensors include a predetermined number of pixels arranged in the direction to receive lights with different spectral characteristics from each other.
Abstract:
L' invention est relative à un spectrographe comportant des moyens de focalisation (3) d'un rayonnement émis par un échantillon éclairé par une source de rayonnement, et des moyens de diffraction (4) du rayonnement focalisé, dans lequel, selon l'invention, les moyens de diffraction comprennent un réseau de diffraction plan à pas variable, et les moyens de focalisation comprennent un miroir elliptique, l'échantillon étant placé à l'un des foyers (F1) d'une surface ellipsoïde définissant le miroir elliptique.
Abstract:
A system includes a plurality of scanning devices and light receivers, enabling a plurality of images of a site to be displayed using output signals produced in response to light from the light receivers. To avoid crosstalk caused by light receivers receiving light emitted by a plurality of scanning devices, different wavebands of light can be applied to different scanning devices, the received light can be filtered, or the light can be supplied to one scanning device at a time to multiplex either frame-by-frame, or pixel-by-pixel, or the light supplied to each scanning device can be modulated and the received light demodulated so that an image is produced in response to light from a single scanning device. Expensive components such as laser light sources, optical detectors, a controller, and processor can be shared by multiple imaging devices to minimize the cost of the imaging system.
Abstract:
Systems and methods use infrared ("IR") wavelengths to assist in cosmetic determination of hair and skin color. Preferred embodiments include a light collector that has significant sensitivity to light waves having a wavelength above 700 nm, and in various contemplated embodiments the light collector has significant sensitivity to light waves above 750, 800, 850 nm, 900 nm, 1000 nm and/or 1100 nm.
Abstract:
Systems and methods use infrared ("IR") wavelengths to assist in cosmetic determination of hair and skin color. Preferred embodiments include a light collector that has significant sensitivity to light waves having a wavelength above 700 nm, and in various contemplated embodiments the light collector has significant sensitivity to light waves above 750, 800, 850 nm, 900 nm, 1000 nm and/or 1100 nm.