Abstract:
A composite article includes a conductive layer on at least a portion of a flexible substrate, wherein the conductive layer has a conductive surface. A patterned layer of a low surface energy material is on a first region of the conductive surface. An overcoat layer free of conductive particulates is on a first portion of a second region of the conductive surface unoccupied by the patterned layer. A via is in a second portion of the second region of the conductive surface between an edge of the patterned layer of the low surface energy material and the overcoat layer. A conductive material is in the via to provide an electrical connection to the conductive surface.
Abstract:
Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
Abstract:
The present invention relates to a thermosetting resin sandwich prepreg, and the copper clad laminates and multi-layered printed circuit wiring boards manufactured therefrom. The interlayer of the thermosetting resin sandwich prepreg contains the thermosetting resin composition with a high content of fillers, and the outer layer of the prepreg contains the thermosetting resin composition with a low content of fillers. The copper clad laminates prepared by using the prepregs have good adhesion to metal foils, insulativity and uniform dielectric constant distribution.
Abstract:
A method for making an electronic assembly includes applying a conductive adhesive to a resist layer overlying a patterned conductive nanowire layer on a substrate and engaging an electrical contact of an electronic component with the conductive adhesive to provide an electrical connection between the electronic component and the conductive nanowire layer.
Abstract:
Reduction/oxidation reagents have been found to be effective to chemically cure a sparse metal nanowire film into a fused metal nanostructured network through evidently a ripening type process. The resulting fused network can provide desirable low sheet resistances while maintaining good optical transparency. The transparent conductive films can be effectively applied as a single conductive ink or through sequential forming of a metal nanowire film with the subsequent addition of a fusing agent. The fused metal nanowire films can be effectively patterned, and the patterned films can be useful in devices, such as touch sensors.
Abstract:
A Transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix and one more corrosion inhibitors. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
Abstract:
The circuit connecting material of the invention is situated between mutually opposing circuit electrodes, and provides electrical connection between the electrodes in the pressing direction when the mutually opposing circuit electrodes are pressed, the circuit connecting material comprising anisotropic conductive particles wherein conductive fine particles are dispersed in an organic insulating material.
Abstract:
The present invention relates to a novel printable paste composition and its use in etching conductive films formed by a plurality of interconnecting silver nano-wires. After etching, the conductive film has a pattern of conductive and non-conductive areas with low visibility. The etched films are suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.