Abstract:
A micromachined structure, comprising: a substarte; a first wet etched pit disposed in the substrate; a second wet etched pit disposed in the substrate, the second pit extending into the substrate a greater depth than the first pit; and a dry pit disposed between, and adjacent to, the first and second pits. Also disclosed is a micromachined substrate comprising: a wet etched pit; and a dry-etched hole disposed in the wet etched pit, wherein the dry hole extends through the substrate.
Abstract:
A method for producing a microsystem that has, situated on a substrate, a first functional layer that includes a conductive area and a sublayer. Situated on the first functional layer is a second mechanical functional layer, which is first initially applied onto a sacrificial layer situated and structured on the first functional layer. In addition, a layer is situated on the side of the sublayer facing away from the conductive area. The layer constitutes a protective layer on the first functional layer that acts in areas during a sacrificial layer etching process so that during removal of the sacrificial layer no etching of the areas of the first functional layer covered by the protective layer occurs, and that in the region of the areas of the first functional layer implemented without the protective layer the sublayer is removed essentially selectively to the conductive area at the same time as the sacrificial layer. Further, a method is described for producing integrated microsystems having silicon-germanium functional layers, sacrificial layers containing germanium, and open metal surfaces. The sacrificial layers containing germanium are at least partially removed in an etching solution, a pH value of the etching solution being kept at least approximately neutral during the etching procedure using a buffer.
Abstract:
An etching method, such as for forming a micromechanical device, is disclosed. One embodiment of the method is for releasing a micromechanical structure, comprising, providing a substrate; providing a sacrificial layer directly or indirectly on the substrate; providing one or more micromechanical structural layers on the sacrificial layer; performing a first etch to remove a portion of the sacrificial layer, the first etch comprising providing an etchant gas and energizing the etchant gas so as to allow the etchant gas to physically, or chemically and physically, remove the portion of the sacrificial layer; performing a second etch to remove additional sacrificial material in the sacrificial layer, the second etch comprising providing a gas that chemically but not physically etches the additional sacrificial material. Another embodiment of the method is for etching a silicon material on or within a substrate, comprising: performing a first etch to remove a portion of the silicon, the first etch comprising providing an etchant gas and energizing the etchant gas so as to allow the etchant gas to physically, or chemically and physically, remove the portion of silicon; performing a second etch to remove additional silicon, the second etch comprising providing an etchant gas that chemically but not physically etches the additional silicon.
Abstract:
A method of bulk manufacturing SiC sensors is disclosed and claimed. Materials other than SiC may be used as the substrate material. Sensors requiring that the SiC substrate be pierced are also disclosed and claimed. A process flow reversal is employed whereby the metallization is applied first before the recesses are etched into or through the wafer. Aluminum is deposited on the entire planar surface of the metallization. Photoresist is spun onto the substantially planar surface of the Aluminum which is subsequently masked (and developed and removed). Unwanted Aluminum is etched with aqueous TMAH and subsequently the metallization is dry etched. Photoresist is spun onto the still substantially planar surface of Aluminum and oxide and then masked (and developed and removed) leaving the unimidized photoresist behind. Next, ITO is applied over the still substantially planar surface of Aluminum, oxide and unimidized photoresist. Unimidized and exposed photoresist and ITO directly above it are removed with Acetone. Next, deep reactive ion etching attacks exposed oxide not protected by ITO. Finally, hot phosphoric acid removes the Al and ITO enabling wires to connect with the metallization. The back side of the SiC wafer may be also be etched.
Abstract:
A gradational etching method for high density wafer production. The gradational etching method acts on a substrate having a first passivation layer and a second passivation layer on a top surface and a bottom surface, respectively, of the substrate. A first etching process is performed to simultaneously etch the substrate and the first passivation layer to remove the first passivation layer. Finally, a second etching process is performed to etch the substrate to a designated depth that is used to control the thickness of the wafer after the second etching process.
Abstract:
In a formation method for forming a fine structure in a workpiece containing an etching control component, using an isotropic etching process, a mask having an opening is applied to the workpiece, and the workpiece is etched with an etching solution to thereby form a recess, corresponding to a shape of the opening, in a surface of the workpiece. The etching of the workpiece is stopped due to the etching control component eluted out of the workpiece in the etching solution within the recess during the isotropic etching process.
Abstract:
An apparatus and method for suspending and strain isolating a structure is provided, the apparatus having a first elongated flexure having first and second ends structured for connection to a support structure, and a second elongated flexure having first and second ends structured for connection to a structure to be isolated from the support structure. A portion of the second flexure intermediate the first and second ends thereof is interconnected to a portion of the first flexure intermediate the first and second ends thereof.
Abstract:
A fiber-optic microswitch is disclosed that includes a flexible mirror positioning structure including an outer fixed frame, a movable platform upon which a mirror is formed, and two or more resilient support members (e.g., monocrystalline silicon springs or torsion beams) connecting the movable platform to the fixed frame. Stationary fibers are mounted over the mirror. An electromagnetic drive mechanism is provided for positioning the movable platform relative to the fixed frame. The electromagnetic drive mechanism includes one or more coils formed on a drive substrate mounted under the monocrystalline structure, and one or more pole pieces that are mounted on the movable platform. Currents are selectively applied to the coils to generate attractive electromagnetic forces that pull the pole pieces, thereby causing the movable platform to move (e.g., tilt) relative to the fixed frame, thereby selectively directing light from one fiber to another. Various monocrystalline structures are disclosed.
Abstract:
One embodiment of the present invention provides a process for selective etching during semiconductor manufacturing. The process starts by receiving a silicon substrate with a first layer composed of a first material, which is covered by a second layer composed of a second material. The process then performs a first etching operation that etches some but not all of the second layer, so that a portion of the second layer remains covering the first layer. Next, the system performs a second etching operation to selectively etch through the remaining portion of the second layer using a selective etchant. The etch rate of the selective etchant through the second material is faster than an etch rate of the selective etchant through the first material, so that the second etching operation etches through the remaining portion of the second layer and stops at the first layer.