Abstract:
Methods and apparatus for measuring an electromagnetic radiation response property associated with a substrate and calibrating an electromagnetic measurement device are disclosed. The methods and apparatus generate electromagnetic waves and capture a portion of the generated waves after the waves pass through a first polarized filter, reflect from a substrate, and pass through a second polarized filter arranged in a cross polar arrangement with respect to the first polarized filter. In addition, the apparatus captures electromagnetic waves that pass through an attenuating filter and reflect from one or more calibration standards. Digital data is determined from the captured electromagnetic waves. The digital data is used to recalibrate the apparatus.
Abstract:
An apparatus for shared optical performance monitoring (OPM) is provided. A wavelength sensitive device receives light at an input port and routes it wavelength selectively to a set of output ports. To perform optical performance monitoring on the output ports, a monitoring component of each output signal is extracted, and these monitoring components are then combined. A single OPM function is then performed on the combined signal. However, with knowledge of the wavelengths that were included in each output signal, a virtual OPM function can be realized for each output port. The per port functionality can include total power per port, power per wavelength per port, variable optical attentuation, dynamic gain equalization, the latter two examples requiring feedback.
Abstract:
A disc serving as a spatial radiation modulator has dispersed radiation filters thereon. Each filter has a transmittance or reflectance modulation function of the form sin2(mθ+pπ/4), where m is a positive integer and p has one of the four values 0, 1, 2, 3. A radiation beam including selected wavelength components is diffracted into an elongated image dispersed according to wavelength. Different wavelength components are focused onto different filters on the modulator and are encoded by correspond filters. Since the modulation functions of the filters are orthogonal to one another, it is possible to extract the amplitude of each wavelength component after it has been encoded or modulated by corresponding filter from the total detected signal during one measurement.
Abstract translation:用作空间辐射调制器的盘在其上具有分散的辐射滤波器。 每个滤光器具有形式为sinθ2(mta + ppi / 4)的透射率或反射调制函数,其中m是正整数,p具有四个值0,1,2,3中的一个 包括所选择的波长分量的辐射束被衍射成根据波长分散的细长图像。 不同的波长分量聚焦在调制器上的不同滤波器上,并由相应的滤波器编码。 由于滤波器的调制功能彼此正交,因此可以在一次测量期间从总检测信号对相应的滤波器进行编码或调制之后提取每个波长分量的振幅。
Abstract:
A color sensor for measuring light from a light source and the method for fabricating the color sensor. The color sensor includes a plurality of photodetectors, a plurality of primary color filters and a trim filter. Each primary color filter includes a layer of material between the light source and a corresponding one of the photodetectors. Each primary color filter preferentially transmits light in a corresponding band of wavelengths about a characteristic wavelength. The trim filter is located between the light source and the photodetectors and includes a layer of material that preferentially attenuates light at a first trim wavelength between two of the characteristic wavelengths. In one embodiment, the trim filter further preferentially attenuates light at a second trim wavelength, the first wavelength being less than one of the characteristic wavelengths and the second wavelength being greater than that characteristic wavelength.
Abstract:
Spectroscopy apparatus for spectrochemical analysis of a sample having an excitation source (60) for providing spectral light (62) of the sample for analysis. The spectral light (62) is analysed via an optical system (66-66-68) that includes a polychromator (70, 74-80) and solid state multielement array detector (82). The elements (i.e. pixels) of the detector (82) are serially read by means (84) to provide light intensity measurements as a function of wavelength. A problem is that the elements (pixels) of the detector (82) continue to accumulate charge during the serial read-out. This is avoided by providing an optical shutter (72) for blocking the spectral light (62) whilst elements (pixels) of the detector (82) are being serially read. Shutter (72) has a piezoelectric actuator which is preferably a bimorph mounted as a cantilever. It is preferably located adjacent to the entrance aperture (70) of the polychromator. Bimorph structures for the actuator and drive and protective circuit arrangements are also disclosed.
Abstract:
A disc serving as a spatial radiation modulator has dispersed radiation filters thereon. Each filter has a transmittance or reflectance modulation function of the form sin2(mnullnullpnull/4), where m is a positive integer and p has one of the four values 0, 1, 2, 3. A radiation beam including selected wavelength components is diffracted into an elongated image dispersed according to wavelength. Different wavelength components are focused onto different filters on the modulator and are encoded by correspond filters. Since the modulation functions of the filters are orthogonal to one another, it is possible to extract the amplitude of each wavelength component after it has been encoded or modulated by corresponding filter from the total detected signal during one measurement.
Abstract:
The present invention relates to spectral analysis systems and methods for determining physical and chemical properties of a sample by measuring the optical characteristics of light emitted from the sample. In one embodiment, a probe head for use with a spectrometer includes a reflector for illuminating a sample volume disposed circumferentially about the light source of the probe head. In another embodiment, a probe head includes an optical blocking element for forcing the optical path between the light source and an optical pick-up optically connected to the spectrometer into the sample. The probe head also includes a reference shutter for selectively blocking light emitted from the sample from reaching the optical pick-up to facilitate calibration of the spectrometer.
Abstract:
The invention comprises a system and method of calibrating a reflected spectral imaging apparatus used for analysis of living tissue. In addition to the reflected spectral imaging apparatus itself, the calibration apparatus comprises an optical filter that is placed between the light source used in the imaging apparatus and the object under analysis, and a calibration module. The filter is fabricated such that when the light is passed through the filter, an image is projected onto the focal plane where imaging is to take place within the object. The image projected by the filter comprises a plurality of areas, each having a different known optical density. For each area, the calibration module measures the intensity of the light reflected from the area and maps the light intensity measurement to the optical density known to be present at the area. This correspondence of light intensity measurements and known optical densities is then used to calibrate the reflected spectral imaging apparatus.
Abstract:
This invention is for a broad spectrum apparatus that provides a substantially uniform spectral response from a spectrometer by introducing one or more elements whose combined response or correction factor is the inverse of that produced by the rest of the apparatus. The response of the elements can be formed either pre or post dispersion. In the case of pre-dispersion the correcting components may be optical components chosen from a full combination of optical filters, either purely transmissive or a combination of transmissive and reflective as in the case of dichroic mirrors, optical lenses with chromatic aberration, integrating spheres or other diffusers coated with material whose response is wavelength dependant. The post-dispersive application may involve a spatial filter or shaped aperture to partially block the more intense wavelengths. A particular attractive application may be a mask that is directly etched onto the surface of a CCD array detector. Post-dispersive applications may also include custom neutral density filters or variable neutral density filters.
Abstract:
An apparatus and means are disclosed for producing a compensating filter to be used in a spectrophotometer to compensate for variations in intensity of the various wavelengths in a particular light source and to compensate for the spectral response of the optical components in the spectrophotometer so that when the filter is used therein the filtered spectrum of the light source produces a photodetector output that is substantially constant with wavelength. A method utilizing the filter is disclosed to record the spectrophotometry of the light rays from an object.