Abstract:
An improved optical system is disclosed for rapid, accurate spectral analysis of the reflectivity or transmissivity of samples. A concave holographic diffraction grating oscillated at high speed is utilized to provide a rapid scanning of monochromatic light through a spectrum of wavelengths. The grating is positively driven at very high speed by a unique cam drive structure comprising identically shaped conjugate cams. The rapid scan by the grating enables the reduction of noise error by averaging over a large number of cycles. It also reduces the measurement time and thus prevents sample heating by excessive exposure to light energy. A filter wheel having dark segments for drift correction is rotated in the optical path and is synchronous with the grating. Source optics is employed to optimally shape the light source for particular applications. The system optics further includes a unique arrangement of lenses, including cylindrical lenses, to obtain the best light source shape which results in maximum light throughput. Fiber optics are also employed and arranged to meet the optimum requirements of the system for light collection and transmission through portions of the optical system.
Abstract:
A liquid sample analyzer (10) includes a liquid sample source (36), a flow cell (100), an optical device (20, 30) and a plurality of optical fibers (110, 120). The flow cell (100) is configured to receive a flow of a liquid sample from the liquid sample source (36). The plurality of optical fibers (110, 120) optically connect the flow cell (100) to the optical device (20, 30) to transmit light between the flow cell (100) and the optical device (20, 30).
Abstract:
A novel device, method and systems disclosed managing the thermal challenges of LIBS laser components and a spectrometer in a handheld structure as well the use of simplified light signal collection which includes a bare fiber optic to collect the emitted light in close proximity to (or in contact with) the test material. In one example embodiment of the handheld LIBS device, a burst pulse frequency is 4 kHz is used resulting in a time between pulses of about 250µs which is a factor of 10 above that of other devices in the prior art. In a related embodiment, an active Q-switched laser module is used along with a compact spectrometer module using a transmission grating to improve LIBS measurement while substantially reducing the size of the handheld analyzer.
Abstract:
A probe head for a diagnostic instrument using Raman spectroscopy for tissue measurements, the probe head comprising; a transmission optical fiber, a plurality of collection optical fibers, and a lens to transmit light from the transmission optical fiber to a test site, wherein the ends of the collection optical fibers are beveled or angled. The beveled surfaces can face towards or away from the end of the transmission fiber. Optical elements are used to gather and filter light scattered from tissue, and analysed to identify abnormal tissue.
Abstract:
Systems, methods, and apparatuses of low-coherence enhanced backscattering spectroscopy are described within this application. One embodiment includes providing incident light comprising at least one spectral component having low coherence, wherein the incident light is to be illuminated on a target object in vivo. An intensity of one or more of at least one spectral component and at least one angular component of backscattering angle of backscattered light is recorded, wherein the backscattered light is to be backscattered from illumination of the incident light on the target object and wherein the backscattering angle is an angle between incident light propagation direction and backscattered light propagation direction. The intensity of the at least one spectral component and the at least one backscattering angle of backscattered light is analyzed, to obtain one or more optical markers of the backscattered light, toward evaluating said properties.
Abstract:
Systems, methods, and apparatuses of low-coherence enhanced backscattering spectroscopy are described within this application. One embodiment includes providing incident light comprising at least one spectral component having low coherence, wherein the incident light is to be illuminated on a target object in vivo. An intensity of one or more of at least one spectral component and at least one angular component of backscattering angle of backscattered light is recorded, wherein the backscattered light is to be backscattered from illumination of the incident light on the target object and wherein the backscattering angle is an angle between incident light propagation direction and backscattered light propagation direction. The intensity of the at least one spectral component and the at least one backscattering angle of backscattered light is analyzed, to obtain one or more optical markers of the backscattered light, toward evaluating said properties.
Abstract:
The disclosure relates generally to methods and apparatus for spectral calibration of a spectroscopic system which includes a fiber array spectral translator. One embodiment relates to a method for obtaining a first image of a known substance using a photon detector and a fiber array spectral translator having plural fibers, wherein the first image comprises at least one pixel; providing a second image of the substance wherein the second image comprises at least one pixel; comparing the first image with the second image; and adjusting at least one pixel of the first image based on the comparison of images to thereby obtain an adjusted image.