Abstract:
A spectrophotometer includes a plurality of sensor elements arranged together, each sensor element including a filter; a light sensor optically coupled with an output of the filter; and a barrier that surrounds the filter and light sensor and a space between the filter and light sensor. For each sensor element, the barrier blocks light that has not passed through the filter from reaching the light sensor including such that light from one sensor element is not detected by another of the sensor elements.
Abstract:
An image capturing device includes a sensor unit that captures a predetermined range including a subject; a reference chart that is captured by the sensor unit together with the subject; an illumination light source that illuminates the subject and the reference chart; a lens member including one or more lenses arranged in an optical path of reflected light extending from the subject and the reference chart to the sensor unit; and a lens moving unit that moves at least one lens of the lens member so as to change a position thereof in a direction along the optical path.
Abstract:
In a color imaging system, multiple rendering devices are provided at different nodes along a network. Each rendering device has a color measurement instrument for calibrating the color presented by the rendering device. A rendering device may be a printer in which the measuring of color samples on a sheet rendered by the printer is provided by a sensor coupled to a transport mechanism which moves the sensor and sheet relative to each other, where the sensor provides light from the samples to a spectrograph. A rendering device may also be a display having a member supporting a color measuring instrument for receiving light from an area of the screen. The color measuring instruments provide for non-contact measurements of color samples rendered on a display or a sheet, and are self calibrating by the use of calibration references.
Abstract:
The present invention relates to optical devices for imaging and spectroscopic applications where optical field curvature is a predominant characteristic. In particular, the invention relates to imaging optics and an optical device for mapping a curved image field. The optical device for mapping a curved image field comprises a focal plane array 20 having a plurality of light processing elements 21 and a focal plane adapter 110 mounted in front of the focal plane array 20 configured to transmit the curved image field to the light processing elements 21 of the focal plane array 20. The focal plane adapter 110 comprises a plurality of waveguides 111 wherein first ends of the waveguides 111 facing the incident curved image field are arranged on a curved surface 12, the curved surface 12 being adapted to a profile of an optical field curvature of the curved image field so that the plurality of waveguides 111 divide the curved image field along a curved focal plane of the image field into a plurality of image segments. The second ends of the waveguides 111 are allocated to the light processing elements 21 to map the plurality of image segments onto the allocated light processing elements 21.
Abstract:
Fiber optic probe scatterometers for spectroscopy measurements are disclosed. An example device includes an optically transparent illumination tube, an opaque tube, an inner surface of the opaque tube being adjacent an outer surface of the illumination tube and the illumination tube being disposed within the opaque tube, and an optical fiber disposed within and spaced a first distance from the illumination tube, wherein the opaque tube is to be coupled to a spectrometer and an illumination source to provide a light signal along the illumination tube and to collect a scattered light signal via the optical fiber for the spectrometer.
Abstract:
An improved method and apparatus for a device with minimized optical cross-talk are provided. In one example, the device includes a filtering material selected to maximize the attenuation of signals causing cross-talk while minimizing the attenuation of desired signals.
Abstract:
A spectroscopic module 1 is provided with a spectroscopic unit 8 and a photodetector 9 in addition to a spectroscopic unit 4 and a photodetector 5 and thus can enhance its detection sensitivity for light in a wide wavelength range or different wavelength regions of light. A light-transmitting hole 5b and a light-absorbing layer 12 are disposed between light detecting portions 5a, 9a, while a reflection unit 7 is provided so as to oppose the layer 12 (i.e., region R), whereby the size can be kept from becoming larger. Ambient light La is absorbed by the layer 12. Any part of the light La transmitted through the region R in the layer 12 is reflected to the region R by the unit 7 formed so as to oppose the region R, whereby stray light can be inhibited from being caused by the incidence of the light La.
Abstract:
Described herein is an improved sensing system (30) and its method of operation. The system (30) includes a camera (16) for viewing an external scene, the camera comprising one or more detector(s) and has a field of view (40) which overlaps with the path (32) of a pulsed laser (12). The laser path (32) and radiation from the scene viewed (40) share a beamsplitter (36) and a window (38). In order to substantially reduce back-scattered radiation from the laser path (32) affecting operation of the detector(s) of the camera (16), the detector(s) is (are) switched in accordance with the operation of the laser (12) to be “off” or non-receiving when the laser (12) is “on” or firing.
Abstract:
In the spectroscopy module 1, a light detecting element 4 is provided with a light passing opening 4b through which light made incident into a body portion 2 passes. Therefore, it is possible to prevent deviation of the relative positional relationship between the light passing opening 4b and a light detection portion 4a of the light detecting element 4. Further, an optical element 7, which guides light made incident into the body portion 2, is arranged at the light passing opening 4b. Therefore, light, which is to be made incident into the body portion 2, is not partially blocked at a light incident edge portion of the light passing opening 4b, but light, which is to be made incident into the body portion 2, can be guided securely. Therefore, according to the spectroscopy module 1, it is possible to improve the reliability.
Abstract:
A spectroscopic module 1 is provided with a spectroscopic unit 8 and a photodetector 9 in addition to a spectroscopic unit 7 and a photodetector 4 and thus can enhance its detection sensitivity for light in a wide wavelength range or different wavelength regions of light. A light-transmitting hole 4b is disposed between light detecting portions 4a, 9a, while a reflection unit 6 is provided so as to oppose a region R in a light-absorbing substrate 2, whereby the size can be kept from becoming larger. Ambient light La is absorbed by the region R in the substrate 2. Any part of the light La transmitted through the region R in the substrate 2 is reflected to the region R by the unit 6 formed so as to oppose the region R, whereby stray light can be inhibited from being caused by the incidence of the light La.