Abstract:
A chemical mechanical polishing process for the formation of self-aligned gate structures surrounding an electron emission tip for use in field emission displays in which the emission tip is i) optionally sharpened through oxidation, ii) deposited with a conformal insulating material, iii) deposited with a flowable insulating material, which is reflowed below the level of the tip, iv) optionally deposited with another insulating material, v) deposited with a conductive material layer, and vi) optionally, deposited with a buffering material, vii) planarized with a chemical mechanical planarization (CMP) step, to expose the conformal insulating layer, viii) wet etched to remove the insulating material and thereby expose the emission tip, afterwhich ix) the emitter tip may be coated with a material having a lower work function than silicon.
Abstract:
Electron source with microtip emissive cathodes having grating-like electrodes. These electrodes can either be cathode conductors (5) or grids (10). Specific application to the excitation of a display screen.
Abstract:
A cold-cathode field emission device controls electron emission by using a current source coupled to the emitter. The open circuit voltage of the current source is less than the voltage at which the FED would emit electrons. Application of an accelerating potential on the gate enables electron emission. Electron emission from the FED is governed by the current source.
Abstract:
Vacuum devices incorporate electron or field forming sources formed by a cellular array of emission sites. The sources comprise a metal/insulator/metal film sandwich on a substrate with a cellular array of holes through the upper metal and insulator, leaving the edges of the upper metal electrode effectively exposed to the upper surface of the lower metal electrode. Sharp protuberances directed toward the upper electrode and constituting emitter tips of controlled configurations are formed on the exposed area of the lower electrode. A method of forming the structure includes starting with the metal/insulator/metal film sandwich having the cellular array of holes already formed and directing permanent electrode material into the cellular array of holes and masking or subsequently removable material onto the surface surrounding the holes whereby an individual sharp cone-like emitter is formed within each of the holes in the cellular array. Vacuum devices are formed from such structures. For example, a diode is formed either by making the masking material over each emission site an electrode or by removing the masking material and applying a conductive electrode material over each emission site.
Abstract:
A field emitter array structure is provided. The field emitter array structure includes a plurality of vertical un-gated transistor structures formed on a semiconductor substrate. The semiconductor substrate includes a plurality of vertical pillar structures to define said un-gated transistor structures. A plurality of emitter structures are formed on said vertical un-gated transistor structures. Each of said emitter structures is positioned in a ballasting fashion on one of said vertical un-gated transistor structures so as to allow said vertical ungated transistor structure to effectively provide high dynamic resistance with large saturation currents.
Abstract:
Provided is a field emission display (FED) capable of driving on the basis of current and preventing leakage current caused by thin film transistors (TFTs). The FED includes: a plurality of unit pixels including an emission element in which cathode luminescence of a phosphor occurs and a TFT for driving the emission element; a current source for applying a scan signal to each unit pixel; and a voltage source for applying a data signal to each unit pixel. Here, the on-current of the current source is high enough to take care of the load resistance and capacitance of a scan row within a given writing time, and the off-current of the current source is so low that the electron emission of each pixel can be ignored. In addition, the pulse amplitude or pulse width of the data signal applied from the voltage source is changed, and thereby the gray scale of the display is represented.
Abstract:
An image formation apparatus comprising a rear plate on which a plurality of wires for connecting electron emission devices are placed; a faceplate arranged in parallel to the rear plate in a frame, on which an image formation material for forming images by radiation of electrons emitted from the electron emission devices is placed; spacers placed between the rear plate and the faceplate and placed on the wires of the rear plate; and getters provided on the wires on which a spacer is not placed but not provided on the wires on which the spacer is placed.
Abstract:
An apparatus and method for stabilizing a threshold voltage in an active matrix field emission device are disclosed. The method includes formation of radiation-blocking elements between a cathodoluminescent display screen of an FED and semiconductor junctions formed on a baseplate of the FED.
Abstract:
An active field emission substrate including a thin film transistor (TFT) substrate and a field emission device substrate is provided. The TFT substrate has a plurality of TFTs, and each TFT at least includes a source, a drain, and a gate. The field emission device substrate is disposed on the TFT substrate and has a plurality of conductive channels and a plurality of field emission sources. Each conductive channel passes through the field emission device substrate and is electrically connected with each field emission source. Moreover, each conductive channel in the field emission device substrate is electrically conducted with the source or the drain of each TFT in the TFT substrate. The active field emission substrate is made up of two substrates fabricated by separate processes, so the procedures can be simplified and the yield can be improved.