Abstract:
The invention discloses double-sided metal clad laminates and fabrication methods thereof. A plurality of polyamic acid coatings is co-extruded on a first metal foil and heat imidization to provide a multilayer polyimide film. A second metal foil is hot pressed on the multilayer polyimide film, thus providing a double-sided metal clad laminate. The polyamic acid coatings include a first, a second, and a third polyamic acid coating with surface tensions of S1, S2, and S3, respectively, satisfying relations of S1>S2>S3, wherein the first polyamic acid coating is the coating directly applied on the first metal foil.
Abstract:
A composite material including an arrangement of approximately aligned nanofilaments overlying at least another arrangement of approximately aligned nanofilaments, the longitudinal axis of the nanotubes of the first arrangement being approximately perpendicular to the longitudinal axis of the nanotubes of the other arrangement, and the arrangements forming at least one array. A resin material having nanoparticles dispersed throughout is disposed among the array(s) of nanofilaments, and cured, and openings may be formed into or through the composite material corresponding to spaces provided in the array of nanofilaments. A composite material according to embodiments forms a microelectronic substrate or some portion thereof, such as a substrate core.
Abstract:
Provided is a resin composition, a prepreg, a cured body, a sheet-like formed body, a laminate, and a multilayered laminate using the resin composition, the resin composition including an epoxy resin and an inorganic filler. For example, when a second layer is formed onto the surface of a cured body, the cured body has improved adhesive property or adhesive property between the cured body and the second layer. A resin composition comprising an epoxy resin, a curing agent for the epoxy resin, a silica treated with an imidazole silane and having a mean particle diameter not more than 5 micrometers, the resin composition including the silica at a proportion of 0.1 to 80 parts by weight to a mixture consisting of the epoxy resin and the curing agent for the epoxy resin 100 parts by weight.
Abstract:
Provided are a coating composition for an interconnection part of an electrode and a plasma display panel including the same. Specifically, the coating composition for an interconnection part of an electrode is used to effectively prevent opens and short circuits of an electrode due to damage of an interconnection unit caused by gases and humidity in the surrounding environment and due to a migration phenomenon.
Abstract:
Nanoscopic silicon containing agents including polyhedral oligomeric silsesquioxane and polyhedral oligomeric silicate are used to eliminate the formation of conductive metal whiskers at the surface of lead-free solders joints and atom migration in semiconductors.
Abstract:
A dielectric composite material containing a toughened benzocyclobutene resin and at least about 50% by weight of an inorganic filler. Also electronic packages having at least one conductive layer and at least one layer of the dielectric composite material. The dielectric composite material can have a dielectric constant less than about 3.5, and a dielectric loss of less than about 0.004.
Abstract:
The invention is directed to a method and composition for providing roughened copper surfaces suitable for subsequent multilayer lamination. A smooth copper surface is contacted with an adhesion promoting composition under conditions effective to provide a roughened copper surface, the adhesion promoting composition consisting essentially of an oxidizer, a pH adjuster, a topography modifier, and a uniformity enhancer. A coating promoter may be used in place of the uniformity enhancer or in addition to the uniformity enhancer. The adhesion promoting composition does not require a surfactant. The process may further comprise the step of contacting the uniform roughened copper surface with a post-dip, wherein the post-dip comprises an azole or silane compound or a combination of said azole and said silane. The post-dip may further comprise, alone or in combination, a titanate, zirconate, and an aluminate. The pH adjuster is preferably sulfuric acid and the oxidizer is preferably hydrogen peroxide. A hydrogen peroxide stabilizer may be used in the adhesion promoting composition.
Abstract:
A prepreg comprising a thermosetting resin (D) composition containing, as an essential component, an aluminum hydroxide-boehmite composite (A) obtained by hydrothermal treatment of aluminum hydroxide, and a substrate (I), a laminate using the above prepreg, and a metal-foil-clad laminate using the above laminate.
Abstract:
A circuit board manufacturing method including the steps of forming a through hole on an insulator layer and then filling the through hole with a conductive paste; dispersing and forming a protective agent on an adhesion surface of a conductor foil so as to include adhesion surface regions where the protective agent does not exist; sticking the conductor foil to the insulator layer; and abutting a plurality of conductive powders constituting the conductive paste and the conductor foil to each other through the adhesion surface regions by means of heating and pressurizing the insulator layer and conductor foil.
Abstract:
Epoxy laminates with outstanding strength were obtained from glass fabrics finished with certain non-styryl arylalkyl aminofunctional alkoxysilane compounds having the formula: and HCl salts thereof, wherein R is an alkyl group having 1 to 6 carbon atoms; R1 is an alkyl group having 1 to 6 carbon atoms; R2 may be the same or different and are independently selected from alkyl groups having 1 to 6 carbon atoms; and n has a value of 0 or 1, wherein the compounds are prepared using readily available starting materials without the need for styrenic double bond.
Abstract translation:具有优异强度的环氧层压板由具有下式的某些非苯乙烯基芳基烷基氨基官能烷氧基硅烷化合物及其HCl盐完成的玻璃织物得到,其中R是具有1至6个碳原子的烷基; R 1是具有1至6个碳原子的烷基; R 2可以相同或不同,并且独立地选自具有1至6个碳原子的烷基; n为0或1,其中使用容易获得的原料制备化合物,而不需要苯乙烯双键。