Abstract:
A spectrophotometer uses a single beam of light into which the sample cell and reference cell are alternately rotated. The radiation-sensing circuit includes means to automatically compensate to read 100 percent transmission.
Abstract:
THERE IS DISCLOSED A CIRCUIT IN A RADIANT ENERGY ANALYZER FOR OFFSETTING AND SCALING THE RATIO OF TWO SIGNALS. THE CIRCUIT IN PART COMPRISES A FIRST CHANNEL AND A SECOND CHANNEL AMPLIFYING DEVICE. A FIRST SIGNAL IS CONNECTED TO THE FIRST CHANNEL AMPLIFYING DEVICE THE OUTPUT OF WHICH IS CONNECTED TO A FIRST VOLTAGE DIVIDER COMPONENT. A SECOND SIGNAL IS CONNECTED TO THE SECOND CHANNEL AMPLIFYING DEVICE THE OUTPUT OF WHICH IS CONNECTED TO A SECOND VOLTAGE DIVIDER COMPONENT. THE SECOND DIVIDER IS CONNECTED TO THE SECOND CHANNEL AMPLIFYING DEVICE SO AS TO PROVIDE A PORTION OF THE SECOND CHANNEL AMPLIFYING DEVICE SIGNAL OUTPUT AS DEGENERATIVE FEEDBACK. THE FIRST DIVIDER IS CONNECTED TO THE SECOND CHANNEL AMPLIFYING DEVICE SO AS TO PROVIDE A PORTION OF THE FIRST CHANNEL AMPLIFYING DEVICE OUTPUT SIGNAL IN SERIES WITH THE SECOND CHANNEL AMPLIFYING DEVICE FEEDBACK. THE RATIO OF THE SECOND SIGNAL TO THE FIRST SIGNAL AT THE OUTPUT OF THE AMPLIFYING DEVICES IS EQUAL TO A SCALE FACTOR TIMES THE DIFFERENCE BETWEEN THE INPUT SIGNAL RATIO AND AN OFFSET TERM WHERE THE OFFSET IS DETERMINED BY THE FIRST DIVIDER AND THE SCALE FACTOR BY THE SECOND DIVIDER.
Abstract:
This relates to systems and methods for measuring a concentration and type of substance in a sample at a sampling interface. The systems can include a light source, optics, one or more modulators, a reference, a detector, and a controller. The systems and methods disclosed can be capable of accounting for drift originating from the light source, one or more optics, and the detector by sharing one or more components between different measurement light paths. Additionally, the systems can be capable of differentiating between different types of drift and eliminating erroneous measurements due to stray light with the placement of one or more modulators between the light source and the sample or reference. Furthermore, the systems can be capable of detecting the substance along various locations and depths within the sample by mapping a detector pixel and a microoptics to the location and depth in the sample.
Abstract:
L’invention concerne un procédé d’acquisition et de formation d’une image de spectrométrie (IS) d’un échantillon (1) comprenant les étapes suivant :e1) acquisition d’une image initiale (II), composée de pixels, d’une zone de l’échantillon et définition d’un ensemble maximal de N, 2≤N, positions de mesure (PM) de spectrométrie, chaque position de mesure comprenant une coordonnée (CX ; CY) et une intensité (IR1 ; IR2 ; IG1 ; IG2 ; IB1 ; IB2) déterminée sur la base des pixels ;e2) attribution d’une valeur de classement à chacune des N positions de mesure sur la base d’écarts, calculé sur la base d’une différence d’intensité et d’une différence de coordonnées, entre les positions de mesure ;e3) détermination d’un groupe de P, 1≤P≤N, positions de mesure en fonction des valeurs de classement ;e4) successivement, pour chaque position de mesure du groupe, positionnement d’un faisceau d’excitation (2) en ladite position de mesure sur la zone de l’échantillon, acquisition d’une mesure de spectrométrie et formation de l’image de spectrométrie. Figure d’abrégé : figure 3.
Abstract:
L’invention concerne un procédé d’acquisition et de formation d’une image de spectrométrie (IS) d’un échantillon (1) comprenant les étapes suivant :e1) acquisition d’une image initiale (II), composée de pixels, d’une zone de l’échantillon et définition d’un ensemble maximal de N, 2≤N, positions de mesure (PM) de spectrométrie, chaque position de mesure comprenant une coordonnée (CX ; CY) et une intensité (IR1 ; IR2 ; IG1 ; IG2 ; IB1 ; IB2) déterminée sur la base des pixels ;e2) attribution d’une valeur de classement à chacune des N positions de mesure sur la base d’écarts, calculé sur la base d’une différence d’intensité et d’une différence de coordonnées, entre les positions de mesure ;e3) détermination d’un groupe de P, 1≤P≤N, positions de mesure en fonction des valeurs de classement ;e4) successivement, pour chaque position de mesure du groupe, positionnement d’un faisceau d’excitation (2) en ladite position de mesure sur la zone de l’échantillon, acquisition d’une mesure de spectrométrie et formation de l’image de spectrométrie. Figure d’abrégé : figure 3.
Abstract:
This relates to systems and methods for measuring a concentration and type of substance in a sample at a sampling interface. The systems can include a light source, optics, one or more modulators, a reference, a detector, and a controller. The systems and methods disclosed can be capable of accounting for drift originating from the light source, one or more optics, and the detector by sharing one or more components between different measurement light paths. Additionally, the systems can be capable of differentiating between different types of drift and eliminating erroneous measurements due to stray light with the placement of one or more modulators between the light source and the sample or reference. Furthermore, the systems can be capable of detecting the substance along various locations and depths within the sample by mapping a detector pixel and a microoptics to the location and depth in the sample.
Abstract:
Method and apparatus for detecting, by absorption spectroscopy, an isotopic ratio of a sample, by passing first and second laser beams of different frequencies through the sample. Two IR absorption cells are used, a first containing a reference gas of known isotopic ratio and the second containing a sample of unknown isotopic ratio. An interlacer or reflective chopper may be used so that as the laser frequencies are scanned the absorption of the sample cell and the reference cell are detected alternately. This ensures that the apparatus is continuously calibrated and rejects the baseline noise when phase sensitive detection is used.
Abstract:
REFERIDO A UN METODO PARA CALIBRAR UN ESPECTROMETRO DE EMISION QUE DISPONE DE UN DETECTOR CAPAZ DE DETECTAR LOS COMPONENTES ESPECTRALES DE LA RADIACION INCIDENTE, Y UN PASO OPTICO DE MEDICION QUE DIRIGE UN HAZ DE ENERGIA A UNA MUESTRA EN DONDE LA RADIACION EMITIDA POR LA MUESTRA AL IRRADIARLA CON EL HAZ DE ENERGIA ES DIRIGIDA AL DETECTOR DE RADIACION. EL METODO COMPRENDE DIRIGIR RADIACION DE CARACTERISTICAS ESPECTRALES CONOCIDAS A LO LARGO DE UN PASO ALTERNATIVO AL DETECTOR. EL DETECTOR DETECTA CARACTERISTICAS ESPECTRALES DE LA RADIACION Y REALIZA UNA COMPARACION CON LAS CARACTERISTICAS ESPECTRALES CONOCIDAS. LOS DATOS DE DESPLAZAMIENTO SE DETERMINAN EN FUNCION DE CUALQUIER VARIACION ENTRE LAS CARACTERISTICAS ESPECTRALES CONOCIDAS Y LAS DETECTADAS. LOS DATOS DE DESPLAZAMIENTO SE ARCHIVAN Y POSTERIORMENTE SE UTILIZAN PARA AJUSTAR LAS CARACTERISTICAS ESPECTRALES DETECTADAS DE UNA MUESTRA EN EL PASO OPTICO DE MEDICION PARA OBTENER UN ANALISIS ESPECTRAL DE LAS SENALES CALIBRADAS PARA EL DESPLAZAMIENTO DE LA MUESTRA. SU APLICACION PERMITE DETECTAR LA COMPOSICION ELEMENTAL DE UNA MUESTRA