Abstract:
Takeoff and landing modes are added to a flight control system of a Vertical Take-Off and Landing (VTOL) Unmanned Air Vehicle (UAV). The takeoff and landing modes use data available to the flight control system and the VTOL UAV's existing control surfaces and throttle control. As a result, the VTOL UAV can takcoff from and land on inclined surfaces without the use of landing gear mechanisms designed to level the UAV on the inclined surfaces.
Abstract:
In embodiments, a system and method for providing propulsion and control to an air vehicle, and for operating the vehicle, include at least three propulsion units that provide vertical thrust for vectored thrust flight, in which at least one or two of the propulsion units also provide thrust for vectored thrust cruising or aerodynamic flight by suitably tilting the respective propulsion units for changing the thrust vector thereof. At the same time, the three or more propulsion units are operated to generate controlling moments to the air vehicle about three orthogonal axes, pitch, roll and yaw, during vectored thrust flight (hover, cruising, etc.) or during aerodynamic flight for controlling the vehicle.
Abstract:
An aircraft capable of thrust-borne flight can be automatically retrieved, serviced, and launched using equipment suitable for use on a small vessel, or at a base with similarly limited space or irregular motion. For retrieval, the aircraft drops a tether, and pulls the tether at low relative speed into contact with a horizontal guide. The tether is pulled across the guide until the guide is captured by a hook or other end effector. The tether length is then adjusted as necessary, and the aircraft swings on the guide to hang in an inverted position. Translation of the tether along the guide then brings the aircraft to a docking carriage, in which the aircraft parks for servicing. For launch the carriage is swung upright, the end effector is released from the guide, and the aircraft thrusts into free flight. A full ground-handling cycle can thus be accomplished automatically with simple and economical apparatus. It can be used with low risk of damage, and requires only moderate accuracy in manual or automatic flight control.
Abstract:
An unmanned aerial vehicle (UAV) (1) in the form of a 'tail sitter' flying wing (1) adapted for vertical take off and landing and transitions between flight as a helicopter and wing-borne flight. The vehicle is electrically powered from onboard batteries and equipped with rotors (7) on miniature helicopter rotor heads (8) at the tips of the wing for both lift, during take off and landing, and forward thrust. In planform the wing (1) comprises, to each side of its longitudinal axis, an inner section (2) with swept back leading and trailing edges, and an outer section (3) with a leading edge more perpendicular to the longitudinal axis, being only mildly swept back or substantially unswept, and a swept forward trailing edge.
Abstract:
A launch and capture system for capturing a vertical take-off and landing (VTOL) vehicle having a thruster (104) and a duct (106) configured to direct airflow generated by the thruster includes a capture plate (120) and an extension (122). The capture plate is configured to alter the airflow and generate a force attracting the duct to the capture plate. The extension is coupled to the capture plate, and is configured to at least facilitate holding the VTOL vehicle against the capture plate.
Abstract:
A vertical take-off and landing miniature aerial vehicle includes an upper fuselage segment (12) and a lower fuselage segment (14) that extend in opposite directions from a rotor guard assembly (16). A rotor (52) rotates within the rotor guard assembly (16) between the fuselage segments(12, 14). Plural turning vanes (28) extend from the rotor guard assembly (16) beneath the rotor (52). Moreover, plural grid fins (26) extend radially from the lower fuselage segment (14) below the turning vanes (28). The aerial vehicle is capable of taking off and landing vertically. During flight, the aerial vehicle can hover and transition between a horizontal flight mode and a vertical flight mode using the grid fins (26).
Abstract:
The invention concerns a remote-controlled flying machine, in particular for surveillance and inspection, capable of hovering and comprising a spherical open-worked resistant shroud (40) integral with a cylindrical fairing (16) wherein rotates a propeller (10) powered by an engine (12) housed in a fuselage (18) secured to the fairing (16) with radial arms (28) and straightening vanes (30).
Abstract:
The VTOL aircraft (10) includes a free wing (16) having wings on opposite sides of the fuselage (12) connected to one another for joint free rotation and for differential pitch settings under pilot, computer or remote control. On vertical launch, pitch, yaw and roll control is effected by the elevators (26), rudder (24) and the differential pitch settings of the wings, respectively. At launch, the elevator (26) pitches the fuselage (12) nose downwardly to alter the thrust vector and provide horizontal speed to the aircraft whereby the free wing (16) rotates relative to the fuselage (12) into a generally horizontal orientation to provide lift during horizontal flight. Transition from horizontal to vertical flight is achieved by the reverse process and the aircraft may be gently recovered in or on a resilient surface such as a net (66).
Abstract:
A drone can be used to carry a payload. The drone can include at least two wings extending from a fuselage and propellers that allow the drone to fly in a horizontal orientation. The drone can takeoff and land from a vertical orientation via landing rods at the rear of the fuselage. The drone also includes an adjustable center of gravity and/or an adjustable center of lift. The center of gravity can be adjusted by changing the weight of payload located fore and aft of the center of gravity or moving at least a portion of the payload fore or aft along the fuselage. The center of lift can be adjusted by swinging the wings away from or towards the fuselage or sliding the wings fore or aft along the fuselage such that the center of lift is adjacent to the center of gravity.
Abstract:
The present disclosure provides a versatile drone and nest launching system. A hybrid UAV drone having fixed wings in addition to vertical take-off and landing capabilities is used to enable the launching nest to remain compact and of simple design with few moving parts, while also housing a drone capable of travelling long distances. The entire system is configured function autonomously, utilising a solar-powered charging pad installed on the nest to repeatedly recharge and relaunch depleted drones. Novel mounting systems for situating the nest in a variety of terrains are also disclosed.