Abstract:
A method of launching a powered unmanned aerial vehicle, the method comprising lifting the vehicle by attachment to a lighter-than-air carrier from a substantially ground-level location to an elevated altitude, wherein the vehicle is prevented from entering its flight mode during ascent, causing the vehicle to detach from the carrier while the velocity of the vehicle relative to the carrier is substantially zero, the vehicle thereafter decreasing in altitude as it accelerates to a velocity where it is capable of preventing any further descent and can begin independent sustained flight.
Abstract:
An aircraft for use in fixed wing flight mode and rotor flight mode is provided. The aircraft can include a fuselage, wings, and a plurality of engines. The fuselage can comprise a wing attachment region further comprising a rotating support. A rotating section can comprise a rotating support and the wings, with a plurality of engines attached to the rotating section. In a rotor flight mode, the rotating section can rotate around a longitudinal axis of the fuselage providing lift for the aircraft similar to the rotor of a helicopter. In a fixed wing flight mode, the rotating section does not rotate around a longitudinal axis of the fuselage, providing lift for the aircraft similar to a conventional airplane. The same engines that provide torque to power the rotor in rotor flight mode also power the aircraft in fixed wing flight mode.
Abstract:
A radio controlled UAV is disclosed. The UAV includes a parachute, with a cylindrical power and control module suspended vertically below the parachute. In one embodiment, a propulsion source is mounted on top of the power and control module with control lines connected to the module below the propulsion source, and in another embodiment the power and control module is suspended from a point above a propulsion source. The UAV is controlled by radio controls from a hand held controller, with actuators retracting and letting out control lines attached to the parachute in order to control direction of the parachute. The UAV may be launched from a tube using a pressurized tank with a nozzle expelling gas from the tank, the tank and nozzle towing a canister from which the UAV is deployed.
Abstract:
An aircraft for use in fixed wing flight mode and rotor flight mode is provided. The aircraft can include a fuselage, wings, and a plurality of engines. The fuselage can comprise a wing attachment region further comprising a rotating support. A rotating section can comprise a rotating support and the wings, with a plurality of engines attached to the rotating section. In a rotor flight mode, the rotating section can rotate around a longitudinal axis of the fuselage providing lift for the aircraft similar to the rotor of a helicopter. In a fixed wing flight mode, the rotating section does not rotate around a longitudinal axis of the fuselage, providing lift for the aircraft similar to a conventional airplane. The same engines that provide torque to power the rotor in rotor flight mode also power the aircraft in fixed wing flight mode.
Abstract:
A manipulator arm system on a ducted air-fan UAV is disclosed herein. The target site may be accurately located by the UAV, and the manipulator system may accurately locate the payload at the target site. The manipulator arm may select tools from a toolbox located on-board the UAV to assist in payload placement or the execution of remote operations. The system may handle the delivery of mission payloads, environmental sampling, and sensor placement and repair.
Abstract:
A power plant for a jet-type model airplanes and UAVs includes an electric motor and a cover. The cover receives a portion of the electric motor and a sleeve into which the electric motor is inserted. The sleeve has a plurality of fins to dissipate heat and create openings into the cover. Air from the fan rotor passes through the openings to cool an electronic speed control member and exits a rear opening in the cover. The cover may also have additional openings for air to enter into the cover.
Abstract:
Takeoff and landing modes are added to a flight control system of a Vertical Take-Off and Landing (VTOL) Unmanned Air Vehicle (UAV). The takeoff and landing modes use data available to the flight control system and the VTOL UAV's existing control surfaces and throttle control. As a result, the VTOL UAV can takeoff from and land on inclined surfaces without the use of landing gear mechanisms designed to level the UAV on the inclined surfaces.
Abstract:
A strut support system for a ducted fan unmanned aerial vehicle to suppress noise comprising: a ducted fan fuselage that defines an opening; an engine that extends longitudinally through the opening in the fuselage; a drive mechanism rotatably mounted to the engine, wherein a fan is mounted on the drive mechanism within a duct defined by the opening; and a plurality of struts extending between the ducted fan fuselage and the engine each comprising a first leg and a second leg joined together by a curvilinear junction, wherein the first leg is attached to the ducted fan fuselage and the second leg is attached to the engine, wherein the plurality of struts are positioned upstream of the fan, wherein the junction between the first leg of each of the plurality of struts and the ducted fan fuselage is outside the highlight of the ducted fan fuselage's leading edge.
Abstract:
Takeoff and landing modes are added to a flight control system of a Vertical Take-Off and Landing (VTOL) Unmanned Air Vehicle (UAV). The takeoff and landing modes use data available to the flight control system and the VTOL UAV's existing control surfaces and throttle control. As a result, the VTOL UAV can takeoff from and land on inclined surfaces without the use of landing gear mechanisms designed to level the UAV on the inclined surfaces.
Abstract:
The present invention relates to the field of aerodynamics. More particularly, the present invention relates to manipulating air flow over a surface, such as the surface of a duct of a ducted fan vehicle. By controlling air flow over, at, or around the surface of a duct, the flight of the vehicle can be controlled. One embodiment of the invention provides a vertical take-off and landing (VTOL) ducted-fan vehicle comprising means for producing steady or unsteady blowing at a surface of a duct for producing control forces and moments for controlling flight. The means for unsteady blowing can be provided by synthetic jets and the means for steady blowing can be provided by a pressurized air supply. The synthetic jets can be integrated into the ducted-fan vehicles in numerous ways, including at the surface of the leading and/or trailing edge of the ducts. The synthetic jets can be independently operated to control the flight of the vehicle. A novel use of these inventive flow control concepts is to apply the control asymmetrically to the duct in order to produce an imbalance in forces, thus resulting in a moment or torque, which can be used to control flight.