Abstract:
Even if an optical fiber obtained by drawing a preform is exposed to hydrogen atmosphere, an OH peak in the optical fiber at wavelength of about 1385 nm hardly rises regardless of the condition of drawing.
Abstract:
An optical fiber comprising: (i) a silica based, rare earth doped core having a first index of refraction n1; (ii) a silica based inner cladding surrounding the core having a second index of refraction n2, such that n1>n2; (iii) a silica based outer cladding surrounding the inner cladding having a third index of refraction n3 such that n2>n3, wherein inner cladding diameter is at least 125 μm.
Abstract translation:一种光纤,包括:(i)具有第一折射率n 1的二氧化硅基稀土掺杂的核; (ii)围绕所述芯的基于二氧化硅的内包层,具有第二折射率n 2 2,使得n 1 2> n 2; (iii)围绕所述内包层的基于二氧化硅的外包层,其具有第三折射率n 3 3,使得n 2 2 N 3 N 3,其中 内包层直径至少为125μm。
Abstract:
A thulium doped silicate glass composition which contains SiO2, Al2O3, and La2O3 emits visible and UV light when excited by infrared light. The glass composition may also contain GeO2 and Er2O3. When excited by infrared light of about 1060 nm, the glass emits visible light at fluorescent transitions of the Tm3+ ions with major broad features at 365, 455, 472, 651, and 791 nm.
Abstract translation:含有SiO 2,Al 2 O 3和La 2 O 3的掺doped硅酸盐玻璃组合物在被红外光激发时发射可见光和UV光。 玻璃组合物还可以含有GeO 2和Er 2 O 3。 当由约1060nm的红外光激发时,玻璃在365nm,455nm,472nm,651nm和791nm处具有主要的广泛特征,在Tm 3+离子的荧光转变下发射可见光。
Abstract:
The invention relates to a multimode optical fibre having a refractive index profile, comprising a light-guiding core surrounded by one or more cladding layers. The present invention furthermore relates to an optical communication system comprising a transmitter, a receiver and a multimode optical fibre.
Abstract:
High rate deposition methods comprise depositing a powder coating from a product flow. The product flow results from a chemical reaction within the flow. Some of the powder coatings consolidate under appropriate conditions into an optical coating. The substrate can have a first optical coating onto which the powder coating is placed. The resulting optical coating following consolidation can have a large index-of-refraction difference with the underlying first optical coating, high thickness and index-of-refraction uniformity across the substrate and high thickness and index-of-refraction uniformity between coatings formed on different substrates under equivalent conditions. In some embodiments, the deposition can result in a powder coating of at least about 100 nm in no more than about 30 minutes with a substrate having a surface area of at least about 25 square centimeters.
Abstract:
Optical fibers are described that exhibit reduced splice loss. Further described are techniques for fabricating optical fibers exhibiting reduced splice loss. One described fiber includes a plurality of regions, one region having a higher viscosity and the other region having a lower viscosity, such that when the fiber is drawn under tension, a strain is frozen into the higher viscosity region. A lower viscosity buffer layer is sandwiched between the higher viscosity region and the lower viscosity region. The buffer layer isolates the lower viscosity region from changes in refractive index in the higher viscosity region arising from a change in the strain frozen into the higher viscosity region.
Abstract:
An optical fiber for optical amplification, characterized in that a full width at half maximum of gain spectrum is 45 nm or more; and a maximum value of power conversion efficiency is 80% or more. A method for producing a rare earth element-doped glass for use in manufacturing the optical fiber, which comprises a deposition step of depositing fine silica glass particles and a co-dopant (a) to prepare an aggregate of fine silica glass particles doped with the co-dopant (a); and a immersion step of immersing the aggregate of fine silica glass particles prepared in the deposition step in a solution containing the rare earth element and the co-dopant (b) to thereby dope the aggregate of fine silica glass particles with the rare earth element component and the co-dopant (b).
Abstract:
Systems and methods are described for fabricating a varying-waveguide optical fiber. In one described method, a preform is fabricated having a core and at least one cladding region. The cladding region has a higher viscosity and the core region has a lower viscosity. The relative viscosities of the cladding region and core are chosen such that, when tension is applied to an optical fiber drawn from the preform, the applied tension is primarily borne by the cladding region thereby causing a viscoelastic strain to be frozen into the cladding region, while creating a minimal viscoelastic strain in the core. The method further includes drawing the preform into an optical fiber under an applied tension, such that a viscoelastic strain is frozen into the cladding region the frozen-in viscoelastic strain decreasing the cladding region refractive index. The cladding region refractive index is changed in a section of the optical fiber by heating the section so as to relax the viscoelastic strain frozen into the cladding region in the section of fiber, thereby increasing the cladding region refractive index in the section of fiber.
Abstract:
A burner module for delivering a flow of chemical reactants to a combustion site of a chemical vapor deposition process includes a plurality of substantially planar layers. The substantially planar layers are arranged in a generally parallel and fixed relationship and define an inlet, an outlet and a passage fluidly connecting the inlet and outlet. At least one of the layers is a distribution layer having a plurality of apertures therethrough and fluidly communicating with the passage. The plurality of apertures collectively define a non-uniform pattern arranged and configured to improve the uniformity of a flow out through the outlet. Burner adapter and assembly embodiments are also included.
Abstract:
A fusion splice including a first optical fiber having a first MFD and a first MFD expansion rate. The splice further includes a second fiber having a second MFD and a second MFD expansion rate, wherein the second MFD is lower than the first MFD. The second fiber comprises a core, a cladding radially surrounding the core, and a zone of high-concentration of fluorine between the core and the cladding. The rate of MFD expansion of the first fiber is less than the rate of MFD expansion of the second fiber during the fusion splicing operation.