Abstract:
The present invention provides a method and compact apparatus for laser induced breakdown atomic emission spectroscopy from a targeted sample having a laser generating a laser beam, the laser beam directed to the sample, optical means for manipulating the laser beam in order maximize laser fluency at the target surface of the sample, the laser beam generating ablation and plasma emission from the sample at the target surface, an emission spectrometer having a detector for detecting a plasma plume from the plasma emission.
Abstract:
L'invention concerne un spectrophotomètre hyperspectral large bande adapté pour analyser un objet (0) comprenant : un ensemble (S) d'illumination comprenant au moins une source (Si) d'émission d'un faisceau lumineux ayant une longueur d'onde appartenant au domaine de l'ultra-violet en direction d'un objet (0) à analyser, ledit ensemble (S) étant en outre configuré pour balayer ligne par ligne l'objet (0) à analyser au moyen de la source (Si) d'émission; un miroir (M2) sphérique de focalisation; un premier miroir (M1) de repliement comprenant une face avant (M11) orientée vers le miroir (M2) sphérique de focalisation ladite première face (M11) ayant un traitement métallique, le premier miroir (M1) ayant en outre une face arrière (M12) opposée à la première face avant (M11), ladite face arrière (M12) comprenant également un traitement métallique, ledit premier miroir (M1) de focalisation comprenant en son centre une fente (F) configurée pour laisser passer une ligne du faisceau issu de l'objet (0); le premier miroir (M1) de repliement, le miroir (M2) sphérique de focalisation et la fente (F) étant agencés pour qu'un faisceau fluorescent émis pas l'objet (0) après absorption du faisceau ultra-violet par l'objet issu de l'ensemble d'illumination subisse une réflexion depuis la première face (M11) du premier miroir (M1) vers le miroir de focalisation (M2), ledit miroir de focalisation (M2) réfléchissant alors le faisceau ainsi focalisé vers la fente (F).
Abstract:
Disclosed are methods useful for providing information useful in the diagnosis of gastrointestinal abnormalities as well as ingestible devices useful for providing information useful in the diagnosis of gastrointestinal abnormalities.
Abstract:
The present subject matter relates to methods of high-speed analysis of product samples. Light is directed to a portion of a product under analysis and reflected from or transmitted through the product toward an optical detector. Signals for the detector are compared with reference signals based on a portion of the illuminating light passing through a reference element to determine characteristics of the product under analysis. The products under analysis may be stationary, moved by an inspection point by conveyor or other means, or may be contained within a container, the container including a window portion through which the product illuminating light may pass.
Abstract:
A method of analyzing a remotely-located object includes the steps of inducing a volume of an ionized ambient gas (614) to emit pulsed terahertz radiation (615) directed toward a targeted object (616) by focusing an optical pump beam (612) in the volume and ionizing another volume of the ambient gas to produce a sensor plasma (626) by focusing an optical probe beam (624) in the other volume of ambient gas. The interaction, in the sensor plasma (626), of the focused optical probe beam (624) and an incident terahertz wave (618), which is produced by the targeted object (616) reflecting, scattering, or transmitting the pulsed terahertz radiation (615), produces a resultant radiation (628). Detecting an optical component of the resultant radiation (628) emitted by the sensor plasma (626) facilitates detection of a signature of the targeted object (616) imposed onto the incident terahertz radiation (618).
Abstract:
The present invention provides a new method and device for disease detection, more particularly cancer detection, from the analysis of diffuse reflectance spectra measured in vivo during endoscopic imaging. The measured diffuse reflectance spectra are analyzed using a specially developed light-transport model and numerical method to derive quantitative parameters related to tissue physiology and morphology. The method also corrects the effects of the specular reflection and the varying distance between endoscope tip and tissue surface on the clinical reflectance measurements. The model allows us to obtain the absorption coefficient (μa) and further to derive the tissue micro-vascular blood volume fraction and the tissue blood oxygen saturation parameters. It also allows us to obtain the scattering coefficients (μs and g) and further to derive the tissue micro-particles volume fraction and size distribution parameters.