Abstract:
The disclosure provides for a portable device for detecting hazardous agents, including explosives using SWIR hyperspectral imaging. The device may comprise a collection optics, a SWIR multi-conjugate filter, a SWIR camera, and a display. The device may also comprise an RGB camera. The disclosure also provides for a method of using said portable device wherein interacted photons are collected and passed through a SWIR multi-conjugate filter. The interacted photons are detected to generate at least one SWIR hyperspectral image. The SWIR hyperspectral image may be analyzed to determine the presence or absence of a hazardous agent on a target. An RGB image of a target may also be generated and analyzed to survey a sample scene.
Abstract:
A method for obtaining a target color measurement using an electronic image capturing device comprising the steps of: (1) determining one or more of a field correction array, level correction vectors, a color correction matrix, and a calibration correction and; (2) adjusting a target color measurement based upon one or more of a field correction array, level correction vector, a color correction matrix, and a calibration correction to obtain a corrected color target measurement.
Abstract:
The disclosure relates to a portable system for obtaining a spatially accurate wavelength-resolved image of a sample having a first and a second spatial dimension that can be used for the detection of hazardous agents by irradiating a sample with light, forming an image of all or part of the sample using Raman shifted light from the sample, and analyzing the Raman shifted light for patterns characteristic of one or more hazardous agents.
Abstract:
A method for optically sampling characteristics of subsurface fluids within a wellhole using continuous, non-pulsed light transmitted downhole in optical fibers for both sampling and reference light channels for accurate attenuation compensation.
Abstract:
A container for holding a sample and a system and method for a handheld spectrometer using the container is disclosed. In one embodiment, the container includes a vial with an optical window at the base of the vial. A sample may be placed in the vial. A hollow plunger may be slidably inserted into the vial which seals the gap between the plunger and the walls of the vial. The plunger includes a filter element. When the plunger is inserted into the vial, the sample is forced against the optical window and the filter element vents liquid and/or gas that is in the vial into the hollow plunger. A portable or handheld system for detecting, for example, biothreat agents makes use of the container in order to determine a spectrum of the sample. The optical window of the container is preferably substantially transparent to photons illuminating the sample and to photons produced due to the interaction of the illuminating photons and the sample.
Abstract:
A spectrometer includes a structural member made of a light-weight material having a small coefficient of thermal expansion (CTE). The spectrometer is dimensionally stable over a range of expected ambient temperatures, without controlling the temperature of the spectrometer.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
A hand-held, self-contained, battery-powered test instrument for analyzing composition of a sample includes an exciter for exciting at least a portion of the sample, a compact cross-dispersed spectrometer for receiving an optical signal from the excited portion of the sample and a processor for processing spectral data about the optical signal from the spectrometer. The exciter may include a spark generator and a counter electrode, a laser or other device for generating the optical signal from the sample portion. The spectrometer has a wavelength range broad enough to enable the test instrument to detect and determine relative quantities of carbon, phosphorous, sulfur, manganese, silicon, iron and other elements necessary to identify common alloys. The spectrometer includes a structural member made of a light-weight material having a small coefficient of thermal expansion (CTE). The spectrometer is dimensionally stable over a range of expected ambient temperatures, without controlling the temperature of the spectrometer.
Abstract:
A method for determining spectral characteristics of an object is disclosed. A probe is positioned in proximity relative to the object. The probe provides light from at least first and second light sources positioned first and second distances from a central light receiver. The first light source and the central light receiver define a first critical height from the surface below which no specularly reflected light from the first light source is received by the central light receiver, and the second light source and the central light receiver define a second critical height from the surface below which no specularly reflected light from the second light source is received by the central light receiver. The first critical height is different from the second critical height.
Abstract:
Scanning interferometer and method of using same providing for rapid, reliable detection of chemical compounds that are readily implemented in low-cost, portable configurations for application in a variety of monitoring and detection applications. A scanning double-beam interferometer, particularly a Michelson interferometer, in which the length of at least one of the optical paths (or arms) of the interferometer is selectively adjustable by use of an actuator in which rotational displacement of a rotatable element is converted into linear displacement of at least one reflective surface which forms an end of an optical path of the interferometer is employed to obtain interferograms of electromagnetic radiation attenuated, emitted, scattered or reflected from a sample. The length of the optical path that is adjusted is determined using an optical detection scheme, particularly where marking on the rotatable element are detected to determine linear displacement of the reflective surface.