Optical device with temperature insensitive etalon
    283.
    发明公开
    Optical device with temperature insensitive etalon 审中-公开
    Optiche Vorrichtung mittemperaturunabhängigemEtalon

    公开(公告)号:EP1265325A1

    公开(公告)日:2002-12-11

    申请号:EP01440161.6

    申请日:2001-06-08

    Applicant: ALCATEL

    Abstract: The invention is related to an optical device with a wavelength monitor for a WDM system, with an etalon (2) and at least one other opto electronic component in a housing (1), with means (3) for influencing the temperature of at least one of the opto electronic components, with a defined gas atmosphere in the housing.
    The invention is also related to special means (4,5,6) to influence the gas density in the gap between the etalon plates.

    Abstract translation: 本发明涉及一种具有用于WDM系统的波长监视器的光学装置,在壳体(1)中具有标准具(2)和至少一个其它光电子部件,具有用于至少影响至少温度的装置(3) 其中一个光电子部件,在壳体内具有明确的气体气氛。 本发明还涉及影响标准普尔板间隙气体密度的特殊方法(4,5,6)。

    Czerny-Turner monochromator with compensation of thermal expansion
    284.
    发明公开
    Czerny-Turner monochromator with compensation of thermal expansion 审中-公开
    Czerny-Turner Monochromator mit Kompensation derWärmeausdehnung

    公开(公告)号:EP1055917A1

    公开(公告)日:2000-11-29

    申请号:EP00401465.0

    申请日:2000-05-25

    CPC classification number: G01J3/02 G01J3/0286 G01J3/18 G02B26/0808

    Abstract: A monochromator comprises an optical ray input section which limits the width of optical rays input from a light source, a first concave mirror for converting the optical rays passing through the optical ray input section into parallel rays, a diffraction grating for separating the parallel rays by wavelength into diffracted rays, a second concave mirror for condensing the diffracted rays when the diffracted rays are input, an optical ray output section which limits a wavelength band width of the condensed rays, and a substrate to which the optical ray input section, the first concave mirror, the diffraction grating, the second concave mirror, and the optical ray output section are fixed. A coefficient of linear expansion of a focal length of the first concave mirror, a coefficient of linear expansion of a focal length of the second concave mirror, and a coefficient of linear expansion of a material forming the substrate in the monochromator are approximately the same.

    Abstract translation: 单色仪包括限制从光源输入的光线的宽度的光线输入部,将通过光线输入部的光线转换为平行光的第一凹面镜,将平行光分离的衍射光栅, 衍射光线的波长带宽的光线输出部,限制聚光的波长带宽的光线输出部,以及光线输入部,第一 凹面镜,衍射光栅,第二凹面镜和光线输出部分是固定的。 第一凹面镜的焦距的线性膨胀系数,第二凹面镜的焦距的线性膨胀系数以及在单色仪中形成基板的材料的线膨胀系数大致相同。

    Dispersive holographic spectrometer
    287.
    发明公开
    Dispersive holographic spectrometer 失效
    Dispersives Spektrometer mit Verwendung eines holographischen Beugungsgitters。

    公开(公告)号:EP0452095A1

    公开(公告)日:1991-10-16

    申请号:EP91303127.4

    申请日:1991-04-09

    Abstract: This invention relates to a dispersive holographic spectrometer (12) for analyzing radiation from an infrared source (16). The holographic spectrometer (12) comprises a piezoelectric block (40) having a holographic lens (38) on one face, an array of detectors (36) on another face and a pair of vernier electrodes (32, 34) on opposite faces. Radiation from the source (16) incident upon the holographic lens (38) is dispersed into component wavelengths (44, 46) and directed towards the detector array (36). The holographic lens (38) has a holographic interference pattern recorded on it such that radiation of predetermined wavelength components are dispersed sufficiently enough such that radiation of specific wavelengths falls on different detector elements (48) of the detector array (36). By applying a voltage to the electrodes (32, 38), an electric field is created within the piezoelectric block (40) such that it is either compressed or expanded. This change in the piezoelectric block (40) alters the direction of the radiation from the holographic lens (38) to the detector array (36). Therefore, misalignment of the source (16) with the holographic lens (38) can be compensated for such that piezoelectric adjustment of the block (40) will make the radiation of individual wavelengths fall on the desired detector element (48). Further, radiation from different wavelengths can be directed from one detector element to another. The detector array (36) is self-scanning such that an absorption spectrum can be measured and recorded over a range of frequencies.

    Abstract translation: 本发明涉及一种用于分析来自红外源(16)的辐射的色散全息光谱仪(12)。 全息光谱仪(12)包括在一个面上具有全息透镜(38)的压电块(40),在另一个面上的一组检测器(36)和相对的面上的一对游标电极(32,34)。 入射到全息透镜(38)上的来自源极(16)的辐射被分散成分量波长(44,46)并指向检测器阵列(36)。 全息透​​镜(38)具有记录在其上的全息干涉图案,使得预定波长分量的辐射足够分散,使得特定波长的辐射落在检测器阵列(36)的不同检测器元件(48)上。 通过向电极(32,38)施加电压,在压电块(40)内产生电压,使其被压缩或扩大。 压电块(40)中的这种变化改变了从全息透镜(38)到检测器阵列(36)的辐射方向。 因此,源(16)与全息透镜(38)的未对准可以被补偿,使得块(40)的压电调节将使各个波长的辐射落在期望的检测器元件(48)上。 此外,来自不同波长的辐射可以从一个检测器元件引导到另一个。 检测器阵列(36)是自扫描的,使得可以在一个频率范围内测量和记录吸收光谱。

    Chassis für optische Geräte
    288.
    发明公开
    Chassis für optische Geräte 失效
    底盘为光学装置。

    公开(公告)号:EP0090967A1

    公开(公告)日:1983-10-12

    申请号:EP83102569.7

    申请日:1983-03-16

    CPC classification number: G01J3/02 G01J3/0262 G01J3/0286 G02B7/008 Y10S359/90

    Abstract: Ein besonders dauerhaftes und thermisch stabiles Chassis für optische Geräte wird durch die Verwendung von verdichteter Keramik erreicht. Der thermische Ausdehnungskoeffizient dieses Werkstoff kann dem des verwendeten optischen Glases gleich gemacht werden. Besonders günstig ist die Ausbildung des Chassis als 3-dimensionales Hohlgerüst.

    Abstract translation: 用于光学设备的一种特别耐用和热稳定的底盘是通过使用致密的陶瓷来实现。 该材料的热膨胀系数可以以相同的使用的光学玻璃制成。 特别有利的是形成所述底盘3维中空结构。

    METHODS AND APPARATUS FOR ON-CHIP DERIVATIVE SPECTROSCOPY

    公开(公告)号:WO2018137562A1

    公开(公告)日:2018-08-02

    申请号:PCT/CN2018/073381

    申请日:2018-01-19

    Abstract: Derivative spectroscopy system (300) for achieving a tunable resolution of 2nm or less in resolving spectral components (328) of an input optical signal (380) is provided so as to estimate derivative spectra of the input optical signal (380) based on the resolved spectral components (328). In the derivative spectroscopy system (300), a first dispersive-element structure (310) spectrally decomposes the input optical signal (380) into subband signals (318). A second dispersive-element structure (320) receives part or all of the subband signals (318) and spectrally decomposes the received subband signals (318) to plural spectral components (328). A material having a temperature-variant refractive index is used to build the second dispersive-element structure (320), enabling a shift of center wavelength of each spectral component (328) as small as 2nm of less upon changing a temperature of the second dispersive-element structure (320). By obtaining three spectral-component sets obtained at three different predetermined temperatures with the center-wavelength shift of 2nm or less, first-and second-order derivative spectra are obtained with good accuracy.

    RADIATION MEASURING SYSTEMS AND METHODS THEREOF
    290.
    发明申请
    RADIATION MEASURING SYSTEMS AND METHODS THEREOF 审中-公开
    辐射测量系统及其方法

    公开(公告)号:WO2018009574A1

    公开(公告)日:2018-01-11

    申请号:PCT/US2017/040759

    申请日:2017-07-05

    Abstract: A radiation measuring device for measuring electromagnetic radiation originating from an external source. The radiation measuring device includes, a spectrometer, a pyranometer, a pyrgeometer, a diffuser, and a control unit. The spectrometer and a pyranometer are positioned in a sensor zone of a housing of the radiation measuring device. The spectrometer measures visible shortwave radiation and near-infrared shortwave radiation received at the sensor zone. The pyranometer measures shortwave radiation received at the sensor zone. The pyrgeometer is positioned in another sensor zone of the housing and measures longwave radiation received at the other sensor zone. The control unit receives radiation measurements from the spectrometer, pyranometer, and pyrgeometer. A corrected amount of radiation received at the sensor zones of the radiation measuring device is determined from the received radiation measurements. Other embodiments are described and claimed.

    Abstract translation: 用于测量源自外部源的电磁辐射的辐射测量装置。 辐射测量装置包括光谱仪,日射强度计,辐射强度计,扩散器和控制单元。 光谱仪和日射强度计定位在辐射测量设备的壳体的传感器区域中。 光谱仪测量在传感器区域接收到的可见短波辐射和近红外短波辐射。 日射强度计测量传感器区域收到的短波辐射。 高温计位于外壳的另一个传感器区域,用于测量在另一个传感器区域接收到的长波辐射。 控制单元接收来自光谱仪,日射强度计和辐射强度计的辐射测量值。 从辐射测量装置的传感器区域接收的校正辐射量由接收的辐射测量值确定。 描述并要求保护其他实施例。

Patent Agency Ranking