Abstract:
This document describes a mobile cleaning robot that includes a chassis that supports a drive system, a debris collection volume; and a cleaning head formed to complete a bottom of the robot. The cleaning head includes a frame for affixing the cleaning head to the chassis, a monolithic housing having an interior cavity, a suspension linkage movably suspending the monolithic housing from the frame, the suspension linkage being configured to lift the monolithic housing, a diaphragm formed of a flexible material and mated to the monolithic housing, a rigid duct mated the frame to form a pneumatic path between the monolithic housing and the rigid duct through the diaphragm, and cleaning extractors disposed in the interior cavity of the monolithic housing.
Abstract:
A robotic end effector includes a finger and at least one actuator. The finger extends from a proximal end to a distal end along a finger axis. The finger includes a first phalanx proximate the proximal end, a second phalanx proximate the distal end, and a knuckle joint including at least one vertebra interposed between and separating the first and second phalanxes. The knuckle joint is configured to permit the second phalanx to pivot relative to the first phalanx about a pivot axis transverse to the linger axis. Each vertebra has an axial thickness extending along the finger axis and a lateral width extending perpendicular to its axial thickness, and its lateral width is greater than its axial thickness. The at least one actuator is operable to move the second phalanx relative to the first phalanx about the pivot axis.
Abstract:
An autonomous floor cleaning robot includes a body, a controller supported by the body, a drive supporting the body to maneuver the robot across a floor surface in response to commands from the controller, and a pad holder attached to an underside of the body to hold a removable cleaning pad during operation of the robot. The pad includes a mounting plate and a mounting surface. The mounting plate is attached to the mounting surface. The robot includes a pad sensor to sense a feature on the pad and to generate a signal based on the feature, which is defined in part by a cutout on the card backing. The mounting plate enables the pad sensor to detect the feature. The controller is responsive to the signal to perform operations including selecting a cleaning mode based on the signal, and controlling the robot according to a selected cleaning mode.
Abstract:
A method of operating a mobile robot includes receiving a layout map corresponding to a patrolling environment at a computing device and maneuvering the robot in the patrolling environment based on the received layout map. The method further includes receiving imaging data of a scene about the robot when the robot maneuvers in the patrolling environment at the computing device. The imaging data is received from one or more imaging sensors disposed on the robot and in communication with the computing device. The method further includes identifying a person in the scene based on the received imaging data and aiming a field of view of at least one imaging sensor to continuously perceive the identified person in the field of view. The method further includes capturing a human recognizable image of the identified person using the at least one imaging sensor.
Abstract:
A robot floor cleaning system (10,10') features a mobile floor cleaning robot (100,100') and an evacuation station (200,200'). The robot includes: a chassis (102) with at least one drive wheel (142a, 142b) operable to propel the robot across a floor surface; a cleaning bin ( 122, 122 ', 122") disposed within the robot and arranged to receive debris ingested by the robot during cleaning; and a robot vacuum (120) configured to pull debris into the cleaning bin from an opening (109,109') on an underside of the robot. The evacuation station is configured to evacuate debris from the cleaning bin of the robot, and includes: a housing (202,202') defining a platform (206,206') for receiving the cleaning robot with the opening on the underside of the robot aligned with a suction opening (216) of the platform; and an evacuation vacuum (212) operable to draw air into the evacuation station housing through the suction opening.
Abstract:
Systems and methods for use of optical odometry sensor systems in a mobile robot. The optical odometry sensor system is positioned within a recessed structure on an underside of the mobile robot body and configured to output optical odometry data. The optical odometry sensor system includes an optical odometry camera that includes a telecentric lens configured to capture images of a tracking surface beneath the body and having a depth of field that provides a range of viewing distances at which a tracking surface is captured in focus from a first distance within the recessed structure to a second distance below the underside of the mobile robot body.
Abstract:
A proximity sensor (520) includes first and second components (522, 523) disposed on a sensor body (514) adjacent to one another. The first component (522, 524) is one of an emitter (522) and a receiver (524), and the second component (522a, 524a) is the other one of an emitter and a receiver, A third component (522b, 524b) is disposed adjacent the second sensor opposite the first sensor. The third component is an emitter if the first sensor is an emitter or a receiver if the first sensor is a receiver. Each component has a respective field of view (523, 525). First and second fields of view intersect, defining a first volume (VI) that detects a floor surface (10) within a first threshold distance (¾). The second and third fields of view intersect, defining a second volume (V2) that detects a floor surface within a second threshold distance (D AC ).
Abstract:
A SONAR system for use with a robotic vacuum having SONAR emitters and receivers thereon. The SONAR system comprises a waveguide or horn located in front of the emitters and receivers that can improve the overall target resolution and reduce the number of "dead zones" where targets are not easily resolved.
Abstract:
A sea glider (100) that includes a pressure hull (110) and fore and aft fairings (120a, 120b) encapsulating the pressure hull. At least one of the fore and aft fairings defines an Ogive profile.
Abstract:
An autonomous coverage robot has a chassis having forward and rearward portions. A drive system is mounted to the chassis and configured to maneuver the robot over a cleaning surface. A cleaning assembly is mounted on the forward portion of the chassis and at has two counter-rotating rollers mounted therein for retrieving debris from the cleaning surface, the longitudinal axis of the forward roller lying in a first horizontal plane positioned above a second horizontal plane on which the longitudinal axis of the rearward roller lies. The cleaning assembly is movably mounted to the chassis by a linkage affixed at a forward end to the chassis and at a rearward end to the cleaning assembly. When the robot transitions from a firm surface to a compressible surface, the linkage lifts the cleaning assembly from the cleaning surface. The linkage lifts the cleaning assembly substantially parallel to the cleaning surface but such that the front roller lifts at a faster rate than the rearward roller.