Abstract:
Provided are novel inspection methods and systems for inspecting unpatterned objects, such as extreme ultraviolet (EUV) mask blanks, for surface defects, including extremely small defects. Defects may include various phase objects, such as bumps and pits that are only about 1 nanometer in height, and small particles. Inspection is performed at wavelengths less than about 250 nanometers, such as a reconfigured deep UV inspection system. A partial coherence sigma is set to between about 0.15 and 0.5. Phase defects can be found by using one or more defocused inspection passes, for example at one positive depth of focus (DOF) and one negative DOF. In certain embodiments, DOF is between about -1 to -3 and/or +1 to +3. The results of multiple inspection passes can be combined to differentiate defect types. Inspection methods may involve applying matched filters, thresholds, and/or correction factors in order to improve a signal to noise ratio.
Abstract:
One embodiment relates to a dynamic pattern generator (112) for reflection electron beam lithography which includes conductive pixel pads (902), an insulative border (906) surrounding each conductive pixel pad so as to electrically isolate the conductive pixel pads from each other, and conductive elements (908) coupled to the conductive pixel pads for controllably applying voltages to the conductive pixel pads. The conductive pixel pads are advantageously cup shaped with a bottom portion, a sidewall portion, and an open cavity (904). Another embodiment relates to a pattern generating apparatus which includes a well structure with sidewalls and a cavity configured above each conductive pixel pad (1210). The sidewalls may include alternating layers of conductive (1212, 1214, 1216) and insulative (1202, 1204, 1206) materials. Other embodiments, aspects and feature are also disclosed.
Abstract:
An improved inspection system using back-side illuminated linear sensing for propagating charge through a sensor is provided. Focusing optics may be used with a back side illuminated linear sensor to inspect specimens, the back side illuminated linear sensor operating to advance an accumulated charge from one side of each pixel to the other side. The design comprises controlling voltage profiles across pixel gates from one side to the other side in order to advance charge between to a charge accumulation region. Controlling voltage profiles comprises attaching a continuous polysilicon gate across each pixel within a back side illuminated linear sensor array. Polysilicon gates and voltages applied thereto enable efficient electron advancement using a controlled voltage profile.
Abstract:
Embodiments of the invention include an electron beam lithography device using a dynamically controllable photocathode capable of producing a patterned electron beam. One such implementation includes a dynamic pattern generator configurable to produce an electron beam having a desired image pattern impressed thereon. Such an electron beam pattern being enabled by selectively activating programmable photoemissive elements of the pattern generator. The apparatus further including an illumination source arranged to direct a light beam onto the dynamic pattern generator to produce the electron beam having the desired pattern. The electron beam being directed through associated electron optics configured to receive the electron beam from the dynamic pattern generator and direct the electron beam onto a target substrate mounted on a stage.
Abstract:
A method and tool for generating reconstructed images that model the high NA effects of a lithography tool used to image patterns produced by a mask. Comparison of the reconstructed images with reference images characterize the mask. The method involves providing a mask reticle for inspection. Generating matrix values associated with a high NA corrective filter matrix that characterizes a high NA lithography system used to print from the mask. Illuminating the mask to produce a patterned illumination beam that is filtered with filters associated with the high NA corrective filter matrix elements to obtain a plurality of filtered beams that include raw image data that is processed to obtain a reconstructed image that is further processed and compared with reference images to obtain mask characterization information.
Abstract:
The invention is a method for generating a design rule map having a spatially varying overlay error budget. Additionally, the spatially varying overlay error budget can be employed to determine if wafers are fabricated in compliance with specifications. In one approach a design data file that contains fabrication process information and reticle information is processed using design rules to obtain a design map with a spatially varying overlay error budget that defines a localized tolerance to overlay errors for different spatial locations on the design map. This spatially varying overlay error budget can be used to disposition wafers. For example, overlay information obtained from measured metrology targets on a fabricated wafer are compared with the spatially varying overlay error budget to determine if the wafer overlay satisfies the required specification.
Abstract:
One embodiment relates to an apparatus using electrons for inspection or metrology of a semiconductor substrate. The apparatus includes an electron source (301), electron lenses (302), scan deflectors (304), an objective electron lens (305), a collection electron lens (310), a pin-hole filter (312), de-scan deflectors (311), and a detector (313). The collection electron lens (310) is configured to focus the secondary electrons so as to form a secondary electron beam (309) which is focused at a conjugate focal plane, and the pin-hole filter (312) is positioned at the conjugate focal plane. The de-scan deflectors (311) are configured to controllably deflect the secondary electrons so as to counteract an influence of the scan deflectors (304) such that a center portion of the secondary electron beam passes through the filter and a remainder portion of the secondary electron beam is filtered out by the filter. Other embodiments and features are also disclosed.
Abstract:
Disclosed are apparatus and methods for measuring a characteristic, such as overlay, of a semiconductor target. In general, order-selected imaging and/or illumination is performed while collecting an image from a target using a metrology system. In one implementation, tunable spatial modulation is provided only in the imaging path of the system. In other implementations, tunable spatial modulation is provided in both the illumination and imaging paths of the system. In a specific implementation, tunable spatial modulation is used to image side-by-side gratings with diffraction orders ±n. The side-by-side gratings may be in different layers or the same layer of a semiconductor wafer. The overlay between the structures is typically found by measuring the distance between centers symmetry of the gratings. In this embodiment, only orders ±n for a given choice of n (where n is an integer and not equal to zero) are selected, and the gratings are only imaged with these diffraction orders.
Abstract:
Systems and methods for measuring one or more characteristics of patterned features on a specimen are provided. One system includes an optical subsystem configured to acquire measurements of light scattered from the patterned features on the specimen at multiple angles of incidence, multiple azimuthal angles, and multiple wavelengths simultaneously. The system also includes a processor configured to determine the one or more characteristics of the patterned features from the measurements. One method includes acquiring measurements of light scattered from the patterned features on the specimen at multiple angles of incidence, multiple azimuthal angles, and multiple wavelengths simultaneously. The method also includes determining the one or more characteristics of the patterned features from the measurements.
Abstract:
Etch selectivity enhancement during electron beam activated chemical etch (EBACE), methods and apparatus for evaluating the quality of structures on an integrated circuit wafer using EBACE, a method for modifying a surface of a substrate (or a portion there of), methods and apparatus for imaging a structure and an associated processor-readable medium are disclosed. A target or portion thereof may be exposed to a gas composition of a type that etches the target when the gas composition and/or target are exposed to an electron beam. By directing an electron beam toward the target in the vicinity of the gas composition, an interaction between the electron beam and the gas composition etches a portion of the target exposed to both the gas composition and the electron beam.