Abstract:
Provided is a wrought aluminum alloy including 5.5 to 6.0 wt % of Zn, 2.0 to 2.5 wt % of Mg, 0.2 to 0.6 wt % of Cu, 0.1 to 0.2 wt % of Cr, at most 0.2 wt % (and more than 0 wt %) of Fe, at most 0.2 wt % (and more than 0 wt %) of Mn, at most 0.2 wt % (and more than 0 wt %) of Si, at most 0.1 wt % (and more than 0 wt %) of Ti, and at most 0.05 wt % (and more than 0 wt %) of Sr, with the remainder being Al.
Abstract:
Provided is an apparatus of manufacturing a seamless pipe. The apparatus includes a container receiving a work therein, a stem pressing one end of the work within the container, a die installed in a direction opposite to the stem, and having an extrusion hole comprised of a plurality of ports, a rotation member installed on a front end of the die, having a stirring tip inserted into a joint surface formed by abutting a plurality of metal pieces to each other on one surface, and rotating to perform a friction stir bonding in a state in which the one surface contacts the joint surface, and a correction mold including a metal pipe discharging path receiving a metal pipe manufactured by the friction stir bonding and discharging the metal pipe to an outside.
Abstract:
The present invention relates to an automated driving system for switching between automated driving mode and manual driving mode in an automated driving situation, and a fallback method for an automated driving failure situation in the automated driving system. According to the present invention, the method comprises the steps of predicting whether, on a route a vehicle is traveling, the vehicle will deviate from an operational design domain (ODD) in which automated driving is possible; and when deviation is predicted, performing a minimal risk maneuver (MRM) process for controlling the vehicle to respond to an automated driving failure situation at a deviation point. According to the present invention, the stability of the automated driving system in emergency situations may be increased, and by proposing a stable mode-switching method for the automated driving system, the best response method may be provided.
Abstract:
Provided is a system and method for controlling a vehicle. The vehicle control system includes an input unit configured to collect driving situation data and driver's state data, a memory configured to store a program for determining a driving pattern using the driving situation data and the driver's state data in the case of an autonomous driving mode, and a processor configured to execute the program. The processor learns the driving situation data and the driver's state data to determine a driver's preferred driving pattern and transmit an autonomous driving control command according to the driving pattern.
Abstract:
Provided is an apparatus of manufacturing a seamless pipe. The apparatus includes a container receiving a work therein, a stem pressing one end of the work within the container, a die installed in a direction opposite to the stem, and having an extrusion hole comprised of a plurality of ports, a rotation member installed on a front end of the die, having a stirring tip inserted into a joint surface formed by abutting a plurality of metal pieces to each other on one surface, and rotating to perform a friction stir bonding in a state in which the one surface contacts the joint surface, and a correction mold including a metal pipe discharging path receiving a metal pipe manufactured by the friction stir bonding and discharging the metal pipe to an outside.
Abstract:
The present invention relates to an extrusion-type connecting rod which is installed between a piston and a crank and can convert the reciprocating motion of the piston into the rotary motion of a crank shaft, an extrusion apparatus for a connecting rod, and a manufacturing method for the extrusion-type connecting rod. The extrusion-type connecting rod may comprise: a first big end having a portion of a crank shaft hole formed on one side and having a seam-line divided surface, which comprises a seam line formed at the time of extrusion, formed on the other side; a second big end, being extrusion-molded simultaneously with the first big end, having the other portion of the crank shaft hole formed on one side, and having a seam-line divided surface, which comprises a seam line formed at the time of extrusion, formed so as to contact the seam-line divided surface of the first big end; a connection part which is extrusion-molded integrally with the second big end; and a small end which is extrusion-molded integrally with the connection part.
Abstract:
The present invention provides an apparatus for controlling the temperature of a battery, which is capable of cooling a battery such as a lithium ion battery and the like by using the circulation of a liquid refrigerant and controlling the temperature of the battery through an endothermic reaction or an exothermic reaction caused by a phase transformation process of the corresponding supersaturated liquid refrigerant. To this end, the present invention comprises: at least one temperature sensor for sensing the temperature of a battery pack so as to generate a temperature detection signal; a refrigerant pipe which is extended between arrangement spaces of a plurality of battery cells included in the battery pack and circulates the supersaturated liquid refrigerant through the inside thereof; a refrigerant circulation driving unit which drives a cooling operation by circulating the supersaturated liquid refrigerant through the refrigerant pipe when the temperature of the battery pack rises; and a control unit for driving and controlling the refrigerant circulation driving unit when the rise in the temperature of the battery pack is detected according to a temperature detection signal received from at least one temperature sensor.
Abstract:
Provided is an apparatus for security of vehicle CAN communication including a security module unit included in each node of a vehicle CAN communication network and configured to monitor an identifier (ID) of each CAN message received through a CAN transceiver to determine whether the CAN message is a malicious CAN message to perform error processing, and a control unit configured to set an ID to be monitored by the security module unit and control the security module unit not to perform monitoring on the ID when the node transmits the CAN message.
Abstract:
Disclosed herein are a common flow field type fuel cell separator, a fuel cell separator assembly, and a fuel cell stack, including a flow field connected to a manifold in which an inlet and an outlet for each of hydrogen, air, and cooling water are formed, and configured such that flows of the hydrogen, the air, and the cooling water are free from interfering with each other.
Abstract:
The present invention relates to a camshaft device, which allows a plurality of components to be assembled to a main shaft, and a method for manufacturing the camshaft device. The camshaft device may include: a main shaft lengthily extending in the lengthwise direction; at least one cam lobe assembled to the main shaft and formed eccentrically from a rotation axis of the main shaft; at least one journal bearing assembled to the main shaft and formed to rotatably support the main shaft; and at least one guide shaft assembled to the main shaft and installed between the cam lobe and another cam lobe so as to align an assembling position of the cam lobe or the journal bearing.