Abstract:
Nano-wire growth processes, nano-wires, and articles having nano-wires are disclosed. The nano-wire growth process includes trapping growth-inducing particles on a substrate, positioning the substrate within a chamber, closing the chamber, applying a vacuum to the chamber, introducing a precursor gas to the chamber, and thermally decomposing the precursor gas. The thermally decomposing of the precursor gas grows nano-wires from the growth-inducing particles. The nano-wires and the articles having the nano-wires are produced by the nano-wire growth process.
Abstract:
Liquid chromatography systems and liquid chromatography components are disclosed. In an embodiment, a liquid chromatography system includes a liquid chromatography component. The liquid chromatography component includes a substrate and an amorphous coating on the substrate. The amorphous coating has a base layer and a surface layer. The base layer includes carboxysilane.
Abstract:
A coated system for containing or conveying a hydrogen-containing fluid including a hydrogen susceptible metallic substrate and a coating on the hydrogen susceptible metallic substrate. The hydrogen-containing fluid is in contact with the coating and the coating reduces or eliminates the effect of hydrogen on the hydrogen susceptible metallic substrate. A coating process for coating a hydrogen susceptible metallic substrate is also disclosed.
Abstract:
Article having a molybdenum substrate and an amorphous chemical vapor deposition coating on the molybdenum substrate, processes of using the articles, and processes of producing the articles are disclosed. The articles include a molybdenum substrate and an amorphous chemical vapor deposition coating on the molybdenum substrate. The amorphous chemical vapor deposition coating includes silicon. The processes of using the article include exposing the article to temperatures of greater than 1,200° C. The processes of producing the article include positioning the molybdenum substrate, and applying the amorphous chemical vapor deposition coating on the molybdenum substrate through thermal chemical vapor deposition.
Abstract:
Surfaces, articles, and processes having silicon-nitride-containing thermal chemical vapor deposition coating are disclosed. A process includes producing a silicon-nitride-containing thermal chemical vapor deposition coating on a surface within a chamber. Flow into and from the chamber is restricted or halted during the producing of the silicon-nitride-containing thermal chemical vapor deposition coating on the surface. A surface includes a silicon-nitride-containing thermal chemical vapor deposition coating. The surface has at least a concealed portion that is obstructed from view. An article includes a silicon-nitride-containing thermal chemical vapor deposition coating on a surface within a chamber. The surface has at least a concealed portion that is obstructed from view.
Abstract:
Thermal chemical vapor deposition coated articles and thermal chemical vapor deposition processes are disclosed. The thermal chemical vapor deposition coated article includes a substrate and a coating on the substrate, the coating having multiple layers and being positioned on regions of the thermal chemical vapor deposition coated article that are unable to be concurrently coated through line-of-sight techniques. The coating has a concentration of particulate from gas phase nucleation, per 100 square micrometers, of fewer than 6 particles having a dimension of greater than 0.5 micrometers. The thermal chemical vapor deposition process includes introducing a multiple aliquot of a silicon-containing precursor to the enclosed vessel with intermediate gaseous soaking to produce the coated article.
Abstract:
A chemical vapor deposition system, method and arrangement of systems are disclosed. The arrangement of chemical vapor deposition systems includes a first chemical vapor deposition system comprising a first coating chamber, a second chemical vapor deposition system comprising a second coating chamber, and a fluid introduction system comprising a vacuum pump and a fluid introduction arrangement arranged and disposed to introduce a fluid to one or both of the first coating chamber and the second coating chamber for chemical vapor deposition coating. At least a portion of the fluid introduction system is arranged for operation with the first chemical vapor deposition system and the second chemical vapor deposition system. The chemical vapor deposition method includes operating the second chemical vapor deposition system. The chemical vapor deposition system includes a non-cuboid coating chamber.
Abstract:
A coated article and a chemical vapor deposition process are disclosed. The coated article includes a functionalized layer applied to the coated article by chemical vapor deposition. The functionalized layer is a layer selected from the group consisting of an oxidized-then-functionalized layer, an organofluoro treated layer, a fluorosilane treated layer, a trimethylsilane treated surface, an organofluorotrialkoxysilanes treated layer, an organofluorosilylhydrides-treated layer, an organofluoro silyl treated layer, a tridecafluoro 1,1,2,2-tetrahydrooctylsilane treated layer, an organofluoro alcohol treated layer, a pentafluoropropanol treated layer, an allylheptafluoroisopropyl ether treated layer, a (perfluorobutyl) ethylene treated layer, a (perfluorooctyl) ethylene treated layer, and combinations thereof. The process includes applying the functionalized layer.
Abstract:
Thermal chemical vapor deposition split-functionalizing processes, coatings, and products are disclosed. The thermal chemical vapor deposition split-functionalizing process includes positioning an article within an enclosed chamber, functionalizing the article within a first temperature range for a first period of time, and then further functionalizing the article within a second temperature range for a second period of time. The thermal chemical vapor deposition split-functionalized product includes a functionalization formed by functionalizing within a first temperature range for a first period of time and a further functionalization formed by further functionalizing within a second temperature range for a second period of time.