Abstract:
A semiconductor die includes a metal layer deposited thereon for enhancing adhesion between the die and a mold compound package. The metal layer is substantially oxide free. The die is coated with a layer or layers of copper (Cu) and/or palladium (Pd) by electroplating or electroless coating techniques. The metal layer provides a uniform wetting surface for better adhesion of the die with the mold compound package during encapsulation. The increased adhesion reduces the delamination potential of the die from the package.
Abstract:
The present invention relates to a heat management structure within a chip package that allows for heat rejection away from a chip but that avoids the prior art problems of thermal stresses caused by dissimilar thermal conductivities of a heat management structure and of creating a thermally unbalanced package due to disparate distribution of packaging plastic. In an embodiment of the present invention a package includes a chip, leads on the chip, a die attach, a downset, a packaging plastic, and an outer structure among others. The outer structure, downset, and die attach are together a substantially unitary article. Achieving a balanced package that substantially resists warpage and bowing during ordinary manufacture and ordinary use in the life of the package is accomplished by balancing packaging material width and the ability of the downset to resist warpage and bowing stresses. A substantial portion of the outer structure is exposed to the external part of the package in the surface which includes the packaging lower edge. Alternatively, the downset can include a part of the external boundary of the package such that exposure of the downset to the external portion of the package allows for additional heat rejection away from the chip in addition to the use of the outer structure.
Abstract:
A semiconductor package includes a substrate, and a semiconductor die flip chip mounted to the substrate. The package also includes substrate circuitry on a circuit side of the substrate, die circuitry on a back side of the die, terminal contacts on the die circuitry, bonded connections between the substrate circuitry and the die circuitry, and an encapsulant on the bonded connections and edges of the die. The die can include an image sensor on the circuit side configured to receive electromagnetic radiation transmitted through the substrate. A method for fabricating the package includes the step of providing a wafer with multiple dice, forming the die circuitry on the dice, and simulating the wafer into individual dice. The method also includes the steps of providing a substrate panel with multiple substrates, forming the substrate circuitry on the substrates, flip chip bonding the dice to the substrates, forming bonded connections between the dice and the substrates, forming the terminal contacts on the die circuitry, and singulating the panel into separate components.
Abstract:
A method is provided for installing circuit components, such as memory devices, in a support, such as a socket. The device to be installed is supported in a holder or shell. The holder is positioned over a support region in the receiving socket. A manual actuator is pressed into the holder to eject the device from the holder and to install the device in the support. The holder may be configured to hold a single device, or multiple devices aligned in slots defined by partitions. A multi-device tray may be provided for indexing devices toward an ejection slot, through which the devices are installed by manual actuation of an ejecting actuator. The technique provides protection for the device prior to and during installation, and facilitates manual installation of such devices without requiring direct hand contact with the device either prior to or during installation.
Abstract:
Ball grid array packages that can be stacked to form highly dense components and the method for stacking ball grid arrays. The ball grid array packages comprise flexible or rigid substrates. The ball grid array packages additionally comprise an arrangement for the substantial matching of impedance for the circuits connected to the semiconductor devices.
Abstract:
A semiconductor device assembly and method of making the devices are disclosed. The assembly comprises a semiconductor die attached to an electrically conductive layer, which is in turn, connected to a dielectric layer carrying conductive traces of the electrical connection layer. The conductive traces provide connection between an array of discrete conductive elements and bonding wires connected to bond pads of the die. The conductive layer enhances thermal conduction and structural stiffness for the assembly. In addition, the conductive layer provides a voltage reference plane that may be connected to a power source, a ground source, or an intermediate reference voltage. The conductive layer also includes at least one electrical current isolation slot, which segments the conductive layer to help isolate noise induced in one segment of the conductive layer from the other segments.
Abstract:
A board for connecting a bare semiconductor die with a bond pad arrangement which does not conform to a master printed circuit board with a specific or standardized pin out, connector pad, or lead placement arrangement. The board comprises a printed circuit board including first elements, such as minute solder balls, pins, or bond wires, for making electrical contact between the board and the master board, and second elements, such as minute solder balls, pins, or bond wires, for making electrical contact between the semiconductor die and the board. The board has circuit traces for electrical communication between the board/master board electrical contact elements, and the semiconductor die board electrical contact elements.
Abstract:
A technique is provided for installing circuit components, such as memory devices, in a support, such as a socket. The device to be installed is supported in a holder or shell. The holder is positioned over a support region in the receiving socket. A manual actuator is pressed into the holder to eject the device from the holder and to install the device in the support. The holder may be configured to hold a single device, or multiple devices aligned in slots defined by partitions. A multi-device tray may be provided for indexing devices toward an ejection slot, through which the devices are installed by manual actuation of an ejecting actuator. The technique provides protection for the device prior to and during installation, and facilitates manual installation of such devices without requiring direct hand contact with the device either prior to or during installation.
Abstract:
The invention provides a method of forming an electrical contact device and a pre-assembly for producing the electrical contact device. The electrical contact device is formed by providing a conducting frame and an insulating frame which is added to predetermined portions of the conducting frame to form the pre-assembly. A plurality of fine pitch electrical leads are disposed in parallel spaced apart relation and connected to each other by connecting strips. An insulating material is applied to the conducting frame to form the insulating frame. The insulating frame encapsulates portions of the electrical leads which extend from opposite sides of the center of the insulating frame retaining, therefore, the electrical leads in position and electrically isolated from one another. Portions of the conducting frame are then removed from the pre-assembly to obtain the electrical device.
Abstract:
A BGA package and a method for fabricating the package are provided. The package includes a semiconductor die, internal conductors wire bonded to bond pads on the die, external ball contacts attached to ball bonding pads formed on the conductors in a dense grid pattern, and an encapsulating resin encapsulating the die and conductors. The package is fabricated using a lead frame having lead fingers that form the conductors. The die is back bonded to a polymer tape placed across the lead fingers, and then wire bonded to bonding pads on the conductors. In addition, the encapsulating resin is molded to include openings for the ball contacts which are aligned with the ball bonding pads. An alternate embodiment BGA package includes a polymer substrate adhesively bonded to a face of the die. The polymer substrate includes conductors having beam leads aligned with an opening through the polymer substrate. The opening provides access for a bonding tool for bonding bumps on the beam leads to bond pads on the die.