Abstract:
PURPOSE: A lithium electrode using a porous 3D current collector, its preparation method and a lithium battery using the electrode are provided, to improve the utilization rate, the cycle lifetime and the charge/discharge efficiency of a battery. CONSTITUTION: The lithium electrode contains a porous 3D current collector and lithium or lithium alloy, and the lithium or the lithium alloy id dispersed into the pore of the 3D current collector. Preferably the current collector is made of the material selected from the group consisting of Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Ru, Pt, Ir, Al, Sn, Bi, Si, Sb and their alloys. The lithium alloy is an alloy of the metal selected from the group consisting of Al, Sn, Bi, Si, Sb, B and their alloys, and lithium. Optionally the lithium electrode comprises further metal inside of the pore of the current collector, and preferably the metal is selected from the group consisting of Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Ru, Pt, Ir, Al, Sn, Bi, Si, Sb and their alloys.
Abstract:
본 발명은 탄소 활물질의 표면에 금속 또는 금속 산화물의 클러스터 또는 박막 층이 형성된 형태의 리튬이차전지용 음극 활물질, 이의 제조방법, 및 이를 포함하는 금속-탄소 하이브리드 전극 및 리튬이차전지에 관한 것이다. 본 발명의 탄소계 음극 활물질은 기체 유동층 분사 코팅법(Gas Suspension Spray Coating)에 의하여 제조되며, 본 발명에 따라 제조된 신소재 탄소 활물질을 포함하는 전극은 전도성, 고율 충방전 특성 및 싸이클 수명 특성이 우수하고, 이론 용량에 가까운 전극 용량을 나타낸다.
Abstract:
PURPOSE: A current collector coated with a metal, an electrode employing the current collector and a lithium battery containing the electrode are provided to improve the conductivity and to allow the potential distribution on the surface of an electrode to be maintained uniformly, thereby enhancing the utilization rate of an electrode and the cycle characteristic and the charge/discharge characteristic of a battery. CONSTITUTION: The current collector is a foil, a punched foil, an expanded foil or a porous plate made of copper, nickel, aluminum or titanium, and whose both faces are coated with a metal with a thickness of several nm to several micrometers uniformly. Preferably the metal coating the current collector is selected from the group consisting of Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Ru, Pt, Ir, Al, Sn, Bi, Si, Sb and their alloys. The electrode comprises a lithium electrode made by coating the current collector with lithium; a carbon-coated carbon electrode; and a metal compound-coated metal compound electrode. The lithium battery comprises a cathode and an anode according to the electrode; a polypropylene or polyethylene separation membrane; and a polymer electrolyte or a solid electrolyte.
Abstract:
PURPOSE: Provided are a novel hybrid polymer electrolyte, a lithium secondary battery comprising the hybrid polymer electrolyte polymer and their fabrication methods. CONSTITUTION: The hybrid polymer electrolyte comprises superfine fibrous porous polymer matrix with particles having diameter of 1 - 3000 nm, polymers and lithium salt-dissolved organic electrolyte solutions incorporated into the porous polymer matrix. The hybrid polymer electrolyte has advantages of better adhesion with electrodes, good mechanical strength, better performance at low and high temperatures, better compatibility with organic electrolytes of a lithium secondary battery and it can be applied to the manufacture of lithium secondary batteries.
Abstract:
PURPOSE: A carbon electrode coated with porous metal thin film, its preparation method and a lithium secondary battery using the electrode are provided, to improve the capacity, charge/discharge rate, lifetime of a battery. CONSTITUTION: The carbon electrode is coated with porous metal thin film with the thickness of several Angstrom to several micrometers. The method comprises the steps of placing a carbon electrode roll in a vacuum chamber; unwinding the carbon electrode off the roll and rewinding it round another roll, to coat the carbon electrode by using an evaporated metal between the two rolls; and stabilizing the carbon electrode under vacuum at specific temperature. Preferably the carbon electrode is made of graphite, coke or hard carbon; the porous metal is selected from Li, Al, Sn, Bi, Si, Sb, Ni, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Pt, Ru, Ir, In and their mixtures; and the stabilization process is carried out under vacuum below 10-1 torr at 20-100 deg.C for 1-24 hours. The lithium secondary battery comprises the carbon electrode; and an anode which is made of LiCoO2, LiMn2O4, LiNiO2, V6O13 or V2O5.
Abstract translation:目的:提供涂覆有多孔金属薄膜的碳电极及其制备方法和使用该电极的锂二次电池,以提高电池的容量,充放电率,寿命。 构成:碳电极涂覆有几埃至几微米厚度的多孔金属薄膜。 该方法包括将碳电极辊放置在真空室中的步骤; 将碳电极从辊子上退绕并在另一个辊子上卷绕,通过在两个辊子之间使用蒸发的金属涂覆碳电极; 并在特定温度下在真空下稳定碳电极。 优选地,碳电极由石墨,焦炭或硬碳制成; 多孔金属选自Li,Al,Sn,Bi,Si,Sb,Ni,Ti,V,Cr,Mn,Fe,Co,Zn,Mo,W,Ag,Au,Pt,Ru,Ir,In和 他们的混合物 稳定过程在20-100℃真空下在10-1乇以下进行1-24小时。 锂二次电池包括碳电极; 和由LiCoO 2,LiMn 2 O 4,LiNiO 2,V 6 O 13或V 2 O 5制成的阳极。
Abstract:
PURPOSE: A method for manufacturing a multicomponent system solid high molecule electrolyte is provided having an excellent adhesion and a mechanical strength for easily manufacturing a battery. CONSTITUTION: A method for manufacturing a multicomponent system sold high molecule electrolyte comprises: mixing more than one compound selected from a group composes of 5¯90 wt% of a poly-methyl-methacrylate(PMMA) system compound, a poly-acrylonitrile(PAN) system compound, a PVC system compound and a poly-vinylidene fluoride(PVdF) system compound to lower than 80 wt%; mixing a plasticizer and an organic solvent to the PMMA/PAN/PVC/PVdF compound; casting and drying the compound for obtaining a solid high molecule film; and injecting a lithium chloride dissolved organic solvent electrolyte.
Abstract:
Provided is a silicon anode active material for a lithium secondary battery, which shows high electroconductivity and low electric resistance, undergoes a reduced change in volume upon charge/discharge, and imparts high output, high capacity and improved lifespan to a lithium secondary battery. The silicon anode active material for a lithium secondary battery is obtained by the method comprising the steps of: mechanically mixing and pulverizing silicon particles and cellulose-like vegetable fibers to allow the surface of the silicon particles to be coated with the vegetable fibers; and heat treating the silicon particles coated with the vegetable fibers under a reductive atmosphere or inert atmosphere to perform carbonization of the surface of the silicon particles. The cellulose-like vegetable fibers are mixed with the silicon particles in a ratio of 0.1-10 per weight of the silicon particles.
Abstract:
본 발명은 가스매체로 부유시킨 흑연계 또는 코크스계 탄소입자에 실리콘 전구체 또는 금속염이 용해된 용액을 전기영동방식으로 분사시키면서 건조 및 열분해를 시행한다. 가스매체로 부유된 탄소입자 표면에는 실리콘, 실리콘-금속 또는 실리콘-금속산화물 층이 클러스터 형태로 수십 나노미터 두께로 균일하게 코팅된다. 또한, 코팅된 탄소입자에 추가로 수 ~ 수십 나노미터 두께의 전도성카본층을 균일하게 형성시킬 수 있다. 이에 따라 전도성 및 고율 충방전 특성이 우수하고, 탄소의 이론용량 보다 최소 30%를 상회하는 전극용량을 나타내며, 싸이클 수명이 우수한 리튬이차전지용 음극활물질을 제공할 수 있다. 가스분산, 전기영동스프레이, 나노코팅, 실리콘, 탄소복합체, 이차전지음극
Abstract:
본 발명은 집전체 상에 10Å - 100 ㎛ 두께의 리튬층 또는 리튬 합금층과, 1Å - 10 ㎛ 두께의 다공성 금속층 또는 다공성 탄소층이 순차 적층된 다층 구조의 리튬 전극, 이의 제조방법 및 이를 포함하는 리튬전지를 제공한다. 보다 구체적으로는, 구리 또는 니켈 집전체 상에 10Å - 100 ㎛ 두께의 리튬층 또는 리튬 합금층과 1Å - 10 ㎛ 두께의 다공성 금속층 또는 다공성 탄소층을 차례로 형성시키는 것에 의하여 제조되는 다층 구조의 리튬 전극, 이의 제조방법 및 이를 포함하는 리튬전지를 제공한다.