Abstract:
본 발명은 연료극 지지형 고체산화물 연료전지의 연료극기능성층, 전해질층, 공기극층 등을 구성하기 위한 제조공정에 사용되는 스크린 인쇄용 페이스트로서, 각 구성층의 원료 분말, 결합제인 에틸셀룰로오스, 용매인 알파 터피니올, 및 추가적인 용매로서 연료극 지지체에 포함된 열경화성 결합제에 대하여 용해성을 갖는 알코올계 용매를 상기 알파 터피니올 대비 0.5 - 20wt%로 포함하는 고체산화물 연료전지용 페이스트 및 이 페이스트를 사용하여 스크린 인쇄법으로 연료전지의 각 구성층을 형성하는 연료극지지 고체산화물 전지 제조 방법을 제공한다. 본 발명은 열경화 몰딩으로 제조한 고효율 기공구조의 연료극 지지체에 스크린 인쇄용 페이스트의 조성을 조절하여 적심성을 향상시키고 경화처리를 통하여 구성 물질의 이동을 억제시킴으로써 제조 공정시 발생되는 구성층의 표면 결함, 구성층 간의 계면 결함을 줄이고 계면강도를 증대시켰다. 이에 따라 고성능, 대면적의 고체산화물 연료전지를 경제적이고 효율적으로 제조할 수 있으며, 제품의 신뢰성을 크게 향상시킬 수 있다. 고체산화물 연료전지, 연료극 지지형 단전지, 스크린 인쇄법, 표면 결함, 계면 결함
Abstract:
Provided are micro-sized electrodes for solid oxide fuel cells and a manufacturing method thereof, which simply fabricates electrodes with sub-micron width in high precision without using an etching process or a machining process. The electrodes of solid oxide fuel cells are manufactured by the steps of: preparing a supporter(10) including an electrolytic layer(12); forming a first photoresist mold for a first electrode pattern on the upside of the supporter(10); preparing a first paste including a first electrode powder; coating the supporter(10) with the first paste to form a first electrode pattern(30a) using the first photoresist mold; removing the first photoresist mold; forming a second photoresist mold for a second electrode pattern on the upside of the supporter(10); preparing a second paste including a second electrode powder; coating the supporter(10) with the second paste to form a second electrode pattern(30b) using the second photoresist mold; and removing the second photoresist mold.
Abstract:
본 발명은 고체산화물 연료전지용 유리/세라믹 섬유 밀봉재와 이의 제조방법에 관한 것으로써, 보다 상세하게는 유리 분말에 세라믹 섬유상 입자를 분산시킨 후 열처리 공정을 거치게 하여 용융된 유리 분말이 세라믹 섬유상 입자 사이의 기공을 채우게 됨과 동시에 세라믹 섬유상 입자에 배향성을 부여하게 되고, 이를 가스켓 형태로 제조하여 고체산화물 연료전지의 스택을 구성하는 단위전지 층간의 밀봉부위에 정확하게 위치시킨 후 가압가열하는 간단한 공정으로 높은 기밀성을 발현시킬 수 있는 고체산화물 연료전지용 유리/세라믹 섬유 밀봉재와 이의 제조방법에 관한 것이다. 본 발명에 의한 고체산화물 연료전지용 유리/세라믹 섬유 밀봉재는 섬유상 세라믹 입자의 충전구조에 의하여 기지인 유리상의 점성유동을 효율적으로 억제할 수 있으며, 연료전지의 스택을 구성하는 단위전지의 층간 밀봉부위에 정확하게 위치시킬 수 있고, 또한 스택의 크기에 따른 압력변화에서도 고른 기밀성을 유지할 수 있는 효과가 있다. 고체산화물, 연료전지, 스택, 유리, 세라믹 섬유
Abstract:
습식 밀링 장치와 슬러리 냉각조로 구성된 순환식 밀링 장치를 기반으로, 실리카 분말과 물을 원료로 사용함으로써, 두 장치 사이의 온도차에 의하여 발생하는 실리카의 용해도차를 이용하여 대부분의 분말 표면에 균일하고 치밀한 실리카 코팅층을 형성할 수 있다. 두 장치 사이의 온도차 이외에도 슬러리 pH를 강산이나 강염기로 조절하거나 미세한 크기의 실리카 분말을 사용함으로써 실리카의 용해도를 증가시켜 실리카 코팅 속도를 증가시킬 수 있고, 공정 중에 실리카 분말을 추가로 첨가함으로써 실리카 코팅층의 두께를 쉽게 증가시킬 수 있다. 밀링, 냉각, 온도, 용해도, 기계화학적, 실리카 코팅, 슬러리 pH, 분말 크기
Abstract:
본 발명은 상호침투형 복합구조를 가지는 고체산화물 연료전지(SOFC)의 연료극 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 세라믹 분말 입자 주위에 니켈 분말이 침착된 코아-쉘 구조로 된 복합분말을 이용하여 제조되어 그 구성상인 세라믹 결정립, 니켈의 결정립 및 기공이 균일한 크기를 가지고, 상기 구성상 상호간의 연속적인 네트워크 형태로 구성된 상호침투형 복합구조를 가짐으로써, 장기 안정성, 열 싸이클 안정성, 산화환원 안정성 및 기계적 물성이 현저히 향상된, 상호침투형 복합구조를 가지는 고체산화물 연료전지의 연료극 및 이의 제조방법에 관한 것이다. 연료극, 상호침투형 복합구조, 안정성, 기계적 물성
Abstract:
본 발명은 고체산화물 연료전지용 유리/세라믹 섬유 밀봉재와 이의 제조방법에 관한 것으로써, 보다 상세하게는 유리 분말에 세라믹 섬유상 입자를 분산시킨 후 열처리 공정을 거치게 하여 용융된 유리 분말이 세라믹 섬유상 입자 사이의 기공을 채우게 됨과 동시에 세라믹 섬유상 입자에 배향성을 부여하게 되고, 이를 가스켓 형태로 제조하여 고체산화물 연료전지의 스택을 구성하는 단위전지 층간의 밀봉부위에 정확하게 위치시킨 후 가압가열하는 간단한 공정으로 높은 기밀성을 발현시킬 수 있는 고체산화물 연료전지용 유리/세라믹 섬유 밀봉재와 이의 제조방법에 관한 것이다. 본 발명에 의한 고체산화물 연료전지용 유리/세라믹 섬유 밀봉재는 섬유상 세라믹 입자의 충전구조에 의하여 기지인 유리상의 점성유동을 효율적으로 억제할 수 있으며, 연료전지의 스택을 구성하는 단위전지의 층간 밀봉부위에 정확하게 위치시킬 수 있고, 또한 스택의 크기에 따른 압력변화에서도 고른 기밀성을 유지할 수 있는 효과가 있다.
Abstract:
본 발명의 나노선 박막, 및 나노선은, 나노선층의 두께 방향으로 나노선의 길이방향 축을 형성하며 나노선 박막에 포함되며, 상기 나노선은, 서로 결합된 나노입자들을 포함하는 것일 수 있다. 본 발명의 나노선 박막의 제조방법은, 물리증착방법을 이용하여 주형을 사용하지 않고도 나노선을 얻을 수 있으면서도 필요한 나노선의 조성을, 촉매나 전구체에 제한 없이 나노선 박막을 제조할 수 있다.
Abstract:
A method for manufacturing a porous composite according to the present invention includes: a composite thin film forming process for forming a cross-deposited composite thin film where a first layer including a first thin film forming material and a second layer including a second thin film forming material are alternatingly deposited; and a composite heat treatment process for forming a porous composite by heat treating the cross-deposited thin film. By using the method for manufacturing a porous composite according to the present invention, a porous composite can be easily manufactured, thereby utilizing the porous composite as an electrode of an electrochemical conversion element and replacing a meticulous refined structure of electrodes of a secondary battery, a fuel cell, and a super capacitor for an enhancement in performance.
Abstract:
본 발명의 복합 밀봉재는, 기밀성은 우수하지만 파괴저항성이 낮은 유리의 파괴인성을 증가시켜 스택의 기밀성을 유지하면서 열싸이클 안정성을 향상시킨다. 이를 위해, 유리 기지상에 알파 알루미나 섬유상 입자, 알파 알루미나 입자상 입자, 금속 입자를 혼합하여 첨가함으로써, 섬유상 및 입자상 알루미나 입자에 의한 균열편향 및 균열가교 효과와, 금속 입자에 의한 균열유인 및 소성변형 효과를 통해 파괴인성을 0.5 MPa·m 0.5 에서 6 MPa·m 0.5 까지 현저히 증가시킬 수 있다. 본 발명의 고 파괴인성 복합 밀봉재를 사용하는 경우, 스택 내의 불균일 온도 분포나 열싸이클 운전에서 발생하는 열응력 하에서도 스택의 기밀성과 안정성을 유지할 수 있기 때문에, 복합 밀봉재의 파괴인성 증가는 대면적 스택의 신뢰성 향상을 위한 가장 중요한 요소로 작용한다. 밀봉재, 평판형 고체산화물 연료전지, 파괴인성, 스택
Abstract:
A composite sealing material for a flat solid oxide fuel cell, and a method for preparing the composite sealing material are provided to improve the heat cycle stability without the deterioration of a stack by increasing the fracture toughness of glass. A composite sealing material for a flat solid oxide fuel cell comprises a glass matrix; and 5-50 vol% of an alpha-alumina fibrous reinforcing material which has an average crystal particle size of 0.2 micrometers or more and an aspect ratio of 10-100 and is contained in the glass matrix. Preferably the composite sealing material comprises further a granular alpha-alumina powder; and/or any one metal powder selected from silver(Ag), palladium(Pd), gold(Au), platinum(Pt), nickel(Ni), Fe-Ni alloy and molybdenum(Mo).