고효율 장수명 염료감응 태양전지 광전극용 이산화티타늄 나노분말 및 그 제조방법
    21.
    发明公开
    고효율 장수명 염료감응 태양전지 광전극용 이산화티타늄 나노분말 및 그 제조방법 有权
    用于制造高效和长寿命的透明太阳能电池的光电二极管二氧化钛纳米粒子及其制造方法

    公开(公告)号:KR1020130006577A

    公开(公告)日:2013-01-17

    申请号:KR1020120143120

    申请日:2012-12-10

    Abstract: PURPOSE: A titanium dioxide nanopowder for high efficiency longevity dye-sensitized solar cell and a manufacturing method thereof are provided to increase photoelectric conversion efficiency through vapor synthesis and post-annealing. CONSTITUTION: A titanium dioxide nanopowder for high efficiency longevity dye-sensitized solar cell and a manufacturing method thereof comprises the following steps: forming titanium nanopowder by using titanium alkoxide precursor; and post-annealing the titania nanopowder to form anatase type titanium nanopowder having bipyramid structure. The titanium dioxide precursor is one or more selected from titanium tetraisopropoxide, titanium methoxide, titanium ethoxide, titanium butoxide, titanium tertiary butoxide and titanium ethylhexoxide. The post-annealing is processed at 400-600 deg. Celsius for 0.5-10 hours.

    Abstract translation: 目的:提供一种用于高效寿命染料敏化太阳能电池的二氧化钛纳米粉末及其制造方法,以通过蒸气合成和后退火提高光电转换效率。 构成:用于高效寿命染料敏化太阳能电池的二氧化钛纳米粉末及其制造方法包括以下步骤:通过使用钛醇盐前体形成钛纳米粉末; 并对二氧化钛纳米粉末进行后退火,形成具有双吡啶结构的锐钛矿型钛纳米粉末。 二氧化钛前体是选自四异丙氧基钛,甲醇钛,乙醇钛,丁醇钛,叔丁醇钛和乙基己酸乙酯中的一种或多种。 后退火在400-600度处理。 摄氏0.5-10小时。

    구형 산화물 입자 배열시 결함 발생을 감소시키는 방법
    22.
    发明公开
    구형 산화물 입자 배열시 결함 발생을 감소시키는 방법 无效
    一种减少氧化物颗粒对准缺陷的方法

    公开(公告)号:KR1020110121020A

    公开(公告)日:2011-11-07

    申请号:KR1020100040420

    申请日:2010-04-30

    Abstract: PURPOSE: A method for reducing the generation of defects in a spherical oxide particle arranging process is provided to obtain three dimensionally large size of crystals and to regularly arrange silica particles on a wide area. CONSTITUTION: The weight reduction of spherical oxide particles is less than or equal to 12 weight% after a heating process is implemented at 550 degrees Celsius or more. The specific surface area increasing rate of the spherical oxide particles is less than or equal to 9 weight% after the heating process is implemented at 550 degrees Celsius or more. The size shrinkage of the spherical oxide particles is less than or equal to 2% after the heating process is implemented at 550 degrees Celsius or more. The transmittance of the spherical oxide particles at 960 cm^-1 is 9% lower than that of the spherical oxide particles at 1100cm^-1 in an infrared ray spectrum measuring process.

    Abstract translation: 目的:提供一种用于减小球形氧化物颗粒排列过程中的缺陷产生的方法,以获得三维大尺寸的晶体并且在大面积上规则地排列二氧化硅颗粒。 构成:在550摄氏度或更高温度下进行加热处理后,球形氧化物颗粒的重量减少小于或等于12重量%。 在550摄氏度以上的加热处理之后,球形氧化物粒子的比表面积增加率小于或等于9重量%。 在550摄氏度或更高温度下进行加热处理后,球形氧化物颗粒的尺寸收缩率小于或等于2%。 在红外线光谱测量过程中,960cm -1处的球形氧化物颗粒的透射率比1100cm ^ -1处的球形氧化物颗粒的透射率低9%。

    소결성이 우수한 질화알루미늄 분말 및 그 제조방법
    23.
    发明授权
    소결성이 우수한 질화알루미늄 분말 및 그 제조방법 失效
    可烧结的氮化铝粉及其制造方法

    公开(公告)号:KR100788196B1

    公开(公告)日:2007-12-26

    申请号:KR1020060080746

    申请日:2006-08-24

    CPC classification number: C01B21/0726 C01P2004/64 C04B35/581

    Abstract: A preparation method is provided to prepare a nano-sized aluminum nitride powder by inducing carbothermal reduction using a carbon raw material and a material(boehmite) other than pure aluminum(metal phase) at a low temperature for a short time and nitriding aluminum at the same time as the reduction, thereby preventing powder particles from being grown or cohered in the reducing and nitriding processes. A preparation method of an aluminum nitride powder comprises: a first step of mixing a boehmite(AlOOH) powder with a carbon-containing powder; a second step of charging the powder mixture into a furnace; a third step of continuously heating the furnace to an intermediate process temperature in an atmosphere of hydrogen gas or nitrogen-containing gas, thereby decomposing the boehmite powder to form aluminum oxide(Al2O3) that is reducible at a low temperature as an intermediate product; and a fourth step of continuously heating the furnace from the intermediate process temperature to a final process temperature without an isothermal treatment in an atmosphere with an ammonia gas amount larger than that of the gas atmosphere of the third step, thereby reacting the intermediate product with carbon component to reduce the intermediate product into aluminum and nitride the aluminum into aluminum nitride at the same time.

    Abstract translation: 提供一种制备方法,通过在低温下使用碳原料和纯铝(金属相)以外的材料(勃姆石)短时间并在氮化铝中氮化铝来进行碳热还原,制备纳米尺寸的氮化铝粉末 同时还原,从而防止粉末颗粒生长或粘附在还原和氮化过程中。 一种氮化铝粉末的制备方法包括:将勃姆石(AlOOH)粉末与含碳粉末混合的第一步骤; 将粉末混合物装入炉中的第二步骤; 在氢气或含氮气体的气氛中将炉连续加热到中间工艺温度的第三步骤,从而分解勃姆石粉末,形成可在低温下还原的氧化铝(Al 2 O 3)作为中间产物; 以及第四步骤,在没有等温处理的中间工艺温度下将炉子在氨气量大于第三步骤的气体气氛的气氛中连续加热,由此使中间产物与碳 将中间产物还原成铝和氮化物,铝同时转化成氮化铝。

    천이금속을 포함하는 이산화티타늄 나노분말 및 그제조방법
    24.
    发明授权
    천이금속을 포함하는 이산화티타늄 나노분말 및 그제조방법 有权
    천이금속을포함하는이산화티타늄나노분말및그제조방천

    公开(公告)号:KR100654331B1

    公开(公告)日:2006-12-08

    申请号:KR1020050132641

    申请日:2005-12-28

    Abstract: Provided are transition metal-doped titania nanopowders, which exhibit remarkable absorption in both UV region and visible region, especially are remarkably improved in optical material characteristics in the UV region. The transition metal-doped titania nanopowders are prepared by subjecting a precursor to a combustion reaction, wherein the precursor is obtained by dissolving iron acetylacetonate and zinc acetylacetonate in titanium isopropoxide. The titania nanopowders are doped with Fe and Zn components. A content of the Fe and Zn components contained in the titania nanopowders is 0.05-0.2wt%. A weight ratio of Fe component to Zn component is in the range of 10-25.

    Abstract translation: 本发明提供过渡金属掺杂的二氧化钛纳米粉末,其在紫外区域和可见区域都显示出显着的吸收,尤其是在紫外区域的光学材料特性方面显着改善。 过渡金属掺杂二氧化钛纳米粉末通过使前体经历燃烧反应来制备,其中前体通过将乙酰丙酮铁和乙酰丙酮锌溶解在异丙醇钛中而获得。 二氧化钛纳米粉末掺杂有Fe和Zn组分。 二氧化钛纳米粉末中所含的Fe和Zn成分的含量为0.05〜0.2重量%。 Fe成分与Zn成分的重量比在10-25的范围内。

    입도가 균일한 친수성 금속산화물 나노분말 및 그 제조방법
    25.
    发明公开
    입도가 균일한 친수성 금속산화물 나노분말 및 그 제조방법 失效
    均质化氢氧化物金属氧化物纳米颗粒及其制备方法

    公开(公告)号:KR1020060051411A

    公开(公告)日:2006-05-19

    申请号:KR1020050087083

    申请日:2005-09-16

    CPC classification number: A61K49/1833 A61K49/1836 B82Y5/00 Y10T428/12028

    Abstract: 본 발명은 금속산화물 코어(core)와, 상기 코아의 표면에 형성되며 상기 코아의 금속 성분과 같은 원소로 이루어진 쉘(shell)로 구성되는 나노분말과; 상기 쉘의 금속 원소와 공유결합을 하는 원소 및 친수성 작용기를 포함하는 유기물;을 포함하는 금속산화물 나노분말을 제공한다. 본 발명의 실시예에 따르면, 20 nm 이하의 구형이며 상자성을 갖는 산화철 분말을 유기용액 상에서 합성하여 입자의 균일성을 확보하고, 이 입자를 화학적 표면개질에 의해 친수성으로 전환하여 입도가 균일한 친수성 산화철 나노분말을 얻을 수 있다.
    소수성, 친수성, 표면개질, 공유결합, 산화철 나노입자, 입도균일성

    진공개폐기용 구리-크롬계 접점 소재의 조직 제어 방법
    26.
    发明授权
    진공개폐기용 구리-크롬계 접점 소재의 조직 제어 방법 失效
    진공개폐기용구리 - 크롬계접점소재의조직제어방

    公开(公告)号:KR100400356B1

    公开(公告)日:2003-10-04

    申请号:KR1020000073926

    申请日:2000-12-06

    Abstract: 본 발명은 Cu-Cr계 접점 재료에 내열성 원소를 첨가함으로써 대전류 차단 특성과 절연 파괴 전압 특성이 우수한 진공개폐기용 Cu-Cr계 접점 소재를 제조하기 위한 진공개폐기용 구리-크롬계 접점 소재의 조직 제어 방법에 관한 것으로, 구리-크롬계 접점 소재의 제조 방법에 있어서, 기지 소재로 이용되는 구리(Cu)와, 접점 소재의 전기적 특성을 향상시켜 주는 크롬(Cr) 및 기지 내의 크롬 입자를 미세하게 해 주는 내열 원소에 대한 각각의 분말이 혼합된 혼합 분말을 얻는 단계와; 상기 혼합 분말을 소결법, 용침법, 가압 성형법 중에서 선택된 어느 한 방법으로 처리하여 소결체를 얻는 단계를 포함하여 이루어진다.

    Abstract translation: 本发明涉及一种控制用于真空断路器的Cu-Cr基触点材料的微结构的方法,其中在Cu-Cr基触点材料中添加耐热元件以获得优异的电流中断特性和电压 耐受能力,以及由此制造的接触材料。 控制Cu-Cr系触点材料的显微组织的方法包括以下步骤:混合用作基体材料的铜粉,改善触点材料的电特性的铬粉以及制造铬粒的耐热元件粉 在基体材料中微细化,从而获得混合粉末,并且对混合粉末进行选自烧结,渗透和热压的一种处理,从而获得烧结产品。

    진공개폐기용 구리-크롬계 접점 소재 제조 방법
    27.
    发明授权
    진공개폐기용 구리-크롬계 접점 소재 제조 방법 失效
    진공개폐기용구리 - 크롬계접점소재제조방

    公开(公告)号:KR100400354B1

    公开(公告)日:2003-10-04

    申请号:KR1020000074135

    申请日:2000-12-07

    Abstract: PURPOSE: A copper-chromium contact material for a vacuum switch and a manufacturing method thereof are provided to manufacture a wholesome Cu-Cr contact material by including a uniform and dispersed sintering structure of Cr particle in Cu matrix. CONSTITUTION: A mixing powder of a copper(Cu) powder and a chromium(Cr) powder is put and pressurized in a mold to manufacture a molding material. A content of the chromium(Cr) ranges 25-75 weight %. The molding material is sintered to a solid status at a temperature lower than a melting point of the copper to obtain a solid-phase sintered body. The temperature lower than a melting point of the copper ranges 900-1075°C. The solid-phase sintered body is heated to a temperature higher than the melting point of the copper to perform a liquid-phase sintering operation. The temperature higher than a melting point of the copper ranges 1100-1250°C.

    Abstract translation: 目的:提供用于真空开关的铜 - 铬触点材料及其制造方法,以通过在Cu基体中包括均匀和分散的Cr颗粒烧结结构来制造有益的Cu-Cr触点材料。 构成:将铜(Cu)粉末和铬(Cr)粉末的混合粉末放入模具中并加压以制造模制材料。 铬(Cr)的含量范围为25-75重量%。 将成型材料在低于铜的熔点的温度下烧结至固体状态以获得固相烧结体。 低于铜熔点的温度范围为900-1075和摄氏度。 将固相烧结体加热到比铜的熔点高的温度以进行液相烧结操作。 高于铜熔点的温度范围为1100-1250℃。

    열차폐 코팅재료 및 그 제조방법, 그리고 이 코팅재료를이용한 열차폐 코팅층의 형성방법
    28.
    发明授权
    열차폐 코팅재료 및 그 제조방법, 그리고 이 코팅재료를이용한 열차폐 코팅층의 형성방법 失效
    열차폐팅팅팅및및및법를를를를를를를를법법법법법법법법법

    公开(公告)号:KR100390388B1

    公开(公告)日:2003-07-07

    申请号:KR1020000044355

    申请日:2000-07-31

    Abstract: PURPOSE: Provided is a thermal barrier coating material for a thermal barrier coating layer, which stabilizes the fine structure of the coating layer at high temperature and prevents the reduction of thermal barrier property, therefore, the lifetime of the coating layer is increased. CONSTITUTION: The thermal barrier coating material is produced by mixing zirconia(ZrO2)-based powder containing 5-15wt% of Y2O3 with 1-10wt% of Al2O3 powder uniformly and then molding the mixture powder and performing a cooling-hydrostatic pressure treatment. And the thermal barrier coating layer is formed by a process comprising the steps of: polishing and washing the surface of a ultra heat-resistant alloy; coating the surface of the alloy with a heat-resistant alloy comprising Ni, 22wt% of Cr, 10wt% of Al, 1wt% of Y by an electronic beam coating method; and coating the coating layer with the thermal barrier coating material by the electronic beam coating method.

    Abstract translation: 目的:提供一种用于热障涂层的热障涂层材料,其在高温下稳定涂层的精细结构并防止热障性能的降低,因此涂层的寿命增加。 组成:热障涂层材料是通过将含有5-15wt%Y2O3的氧化锆(ZrO2)基粉末与1-10wt%Al2O3粉末均匀混合,然后模塑混合物粉末并进行冷却 - 流体静压处理而制备的。 并且热障涂层由包括以下步骤的方法形成:抛光和清洗超耐热合金的表面; 用含有Ni,22wt%Cr,10wt%Al,1wt%Y的耐热合金通过电子束涂覆法涂覆合金表面; 并通过电子束涂覆方法用热障涂层材料涂覆涂层。

    진공개폐기용 구리-크롬계 접점 소재의 조직 제어 방법
    29.
    发明公开
    진공개폐기용 구리-크롬계 접점 소재의 조직 제어 방법 失效
    用于真空中断器的CU-CR接触材料的微结构控制方法及其制造的接触材料

    公开(公告)号:KR1020020044751A

    公开(公告)日:2002-06-19

    申请号:KR1020000073926

    申请日:2000-12-06

    Abstract: PURPOSE: A methods of microstructure control for cu-cr contact materials for vacuum interrupters and contact materials manufactured thereby are provided to manufacture copper-chromium contact materials for a vacuum load-break switch which has an interception performance and an insulation feature by forming a perfect structure. CONSTITUTION: A mixing powder is obtained by mixing powders with respect to a copper(Cu), a chromium(Cr), and a heat-resisting element. The copper(Cu) is used for a matrix material. The chromium(Cr) improves an electric feature of a contact material. The chromium includes a chromium particle which has a particle size of 200-300 micro meter in order to reduce an oxide coating amount deteriorating the electric feature. The heat-resisting element makes a chromium particle in a matrix to be minute. The mixing powder is processed by one selected from a sintering method, an infiltration method, and a pressure forming method to obtain a sintered body.

    Abstract translation: 目的:提供一种用于真空断路器及其制造的触点材料的cu-cr接触材料的微结构控制方法,用于制造用于真空负载断路开关的铜 - 铬接触材料,其具有拦截性能和绝缘特征,通过形成完美的 结构体。 构成:通过将粉末相对于铜(Cu),铬(Cr)和耐热元件混合而获得混合粉末。 铜(Cu)用于基体材料。 铬(Cr)改善了接触材料的电特征。 为了减少电气特性恶化的氧化物涂层量,铬包括粒径为200-300微米的铬颗粒。 耐热元件使基体中的铬颗粒微小。 混合粉末通过烧结法,渗透法和压力成形法中的一种进行处理,得到烧结体。

    공업용 다이아몬드의 결합 금속
    30.
    发明授权
    공업용 다이아몬드의 결합 금속 失效
    工业钻石的保税金属

    公开(公告)号:KR100176294B1

    公开(公告)日:1999-02-18

    申请号:KR1019960016600

    申请日:1996-05-17

    Inventor: 박종구

    Abstract: 공업용 다이아몬드 공구의 제조에 사용되는 공업용 다이아몬드의 결합 금속이 개시된다. 결합 금속은 텅스텐(혹은 몰리브덴늄)이 25.0 내지 45.0중량%, 니켈이 15.0 내지 30.0중량%, 철이 10.0 내지 25.0중량%, 구리가 10.0 내지 40.0중량%, 주석이 3.5 내지 15.0중량% 및 기타 0 내지 5.0 중량%로 이루어진다. 기타는 코발트, 은, 아연 및 인으로 이루어진 그룹으로부터 한가지 이상으로 선택되는 것이 바람직하다.

Patent Agency Ranking