Abstract:
PURPOSE: A multi-layered polymer electrolyte and a lithium secondary battery containing the electrolyte are provided, to improve the adhesive strength, the mechanical properties, the low and high temperature characteristics, the high rate discharge capacity, the lifetime, the capacity and the stability of a battery. CONSTITUTION: The electrolyte comprises a separation membrane layer, a gel polymer electrolyte layer, and an organic electrolyte solution which is prepared by dissolving a lithium salt into an organic solvent. The separation membrane layer is made of a polymer electrolyte, polypropylene, polyethylene, polyvinylidene fluoride or non-woven; the gel polymer electrolyte layer comprises 5-90 wt% of a polyacrylonitrile-based polymer, 5-80 wt% of a polyvinylidene fluoride-based polymer or a poly(methyl methacrylate)-based polymer, and 5-80 wt% of a poly(vinyl chloride)-based polymer or a polyvinylidene fluoride-based polymer, and is coated to the one or both sides of the separation membrane. Preferably the lithium salt is selected from the group consisting of LiPF6, LiClO4, LiAsF6, LiBF4, LiCF3SO3, Li(CF3SO2)2N and their mixtures; and the organic solvent is selected from the group consisting of ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and their mixtures.
Abstract translation:目的:提供一种多层聚合物电解质和含有电解质的锂二次电池,以提高粘合强度,机械性能,低温和高温特性,高放电容量,寿命,容量和稳定性 的电池。 构成:电解质包含分离膜层,凝胶聚合物电解质层和通过将锂盐溶解在有机溶剂中而制备的有机电解质溶液。 分离膜层由聚合物电解质,聚丙烯,聚乙烯,聚偏二氟乙烯或无纺布制成; 凝胶聚合物电解质层包含5-90重量%的基于聚丙烯腈的聚合物,5-80重量%的聚偏二氟乙烯基聚合物或聚(甲基丙烯酸甲酯)基聚合物,以及5-80重量%的聚 (氯乙烯)类聚合物或聚偏二氟乙烯类聚合物,并且被涂覆在分离膜的一侧或两侧。 优选锂盐选自LiPF 6,LiClO 4,LiAsF 6,LiBF 4,LiCF 3 SO 3,Li(CF 3 SO 2)2 N及其混合物; 有机溶剂选自碳酸亚乙酯,碳酸亚丙酯,碳酸二乙酯,碳酸二甲酯,碳酸甲乙酯及其混合物。
Abstract:
PURPOSE: A method for modifying the surface of metal oxide electrode material powder for the anode of a lithium secondary battery and a surface-modified electrode material powder prepared by the method are provided, to improve the conductivity and formability of an electrode. CONSTITUTION: The method comprises the steps of loading the metal oxide particles for an electrode which is pretreated in a vacuum oven, into a fluidized bed chemical vaporization reactor; supplying an inert gas into the reactor to fluidize the particles; and supplying an organometallic precursor to the particles by using an accompanying gas, or spraying an organometallic compound-dissolved solution into the particles, to coat the particles by pyrolysis and chemical vaporization, thereby forming a metal or metal oxide coating with a thickness of 1-300 nm. Preferably the coated metal or metal oxide is selected from the group consisting of Li, Al, Sn, Bi, Si, Sb, Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Ag, Zr, Mo, Au, Ru, Pd, In, Pt, Ir, their alloys, and their metal oxides.
Abstract:
본발명은 5∼90중량%의 PMMA계 화합물 및 PAN계 화합물, PVC계 화합물 및 PVdF계 화합물로 이루어진 그룹으로부터 선택된 하나이상의 화합물을 각각 80중량%이하로 혼합하여 이루어지는 PMMA계/PAN계/PVC계/PVdF계 혼합물에, 가소제 및 유기용매를 혼합하고 이를 캐스팅하여 건조함으로써 고체고분자 막을 얻은 후, 리튬염이 용해된 유기용매전해질을 주입하는 것으로 이루어지는 것을 특징으로 하는 다성분계 고체고분자 전해질의 제조방법에 관한 것으로, 본발명에 의한 고체고분자 전해질들은 이온전도도가 리튬 고분자 전지용 전해질로서 충분히 사용할 수 있을 정도로 우수하고 접착력 및 기계적 강도도 우수하여 전지제조가 용이할 뿐만 아니라 이를 이용한 전지는 전극용량 및 싸이클 수명 특성과 같은 전지성능도 우수하게 나타나 리튬고분자 전지용 고체� ��분자 전해질로서 매우 적합한 것으로 나타났다.
Abstract:
PURPOSE: The method is provided to accomplish high capacity, long life, low magnetic discharge rate, improved rapid charge/discharge, and rapid early activation of metallic hydrogen electrode, as well as high capacity and long life of nickel electrode. CONSTITUTION: The method comprises the steps of: (i) adding La compound to AB2 based hydrogen storage alloy to form a hydrogen storage alloy, (ii) immersing the alloy in aqueous solution in which HF and KF are dissolved, to form LaF3 on the surface of the hydrogen storage alloy. The amount of La which is added to the AB2 based hydrogen storage alloy is 1-10 weight%. KF is added to electrolyte, in order to insure fluorination effects continuously.
Abstract:
PURPOSE: A solid polymer electrolyte and method for producing lithium polymer battery are provided for enhancing adhesiveness and mechanical stability of laminate formed by the solid electrolyte without alteration of ionic conductivity by blending PAN and PVdF polymers. CONSTITUTION: The solid polymer electrolyte is produced by mixing PAN and PVdF polymers as the starting materials in a weight ratio of 10:1-1:5, blending it with the organic solvent, SiO2 and the plasticizer; heating the resultant mixture to form solid polymer electrolyte matrix; casting the matrix. The amount of organic solvent added is 1-5 times the amount of the starting materials. The amount of SiO2 is 1-20 wt.% based on the weight of the starting materials. The heating process is carried out at 110-180 deg.C. for 10 minutes to 2 hours. The lithium polymer battery is produced by mixing the solid polymer electrolyte together with the plasticizer to prepare the combined anode and cathode and laminating the electrolyte to form the final product.
Abstract:
PURPOSE: A manufacturing method for a ternary system solid high molecule electrolyte is provided to easily manufacture a battery by using good adhesive strength and mechanical strength and to improve an electrode capacity and cycle life span characteristic. CONSTITUTION: A ternary system solid high molecule electrolyte is manufactured by; performing a high molecule blending after mixing a plasticizer and an organic solvent to a Poly Acrylonitrile(PAN) system/a Poly Vinyl Chloride(PVC) system/a Poly Vinylidene Fluoride(PVdF) system compound consist of 10¯90 wt% of PAN system compound, 1¯50 wt% of PVC system compound, and 1¯50 wt% of PVdF system compound; forming a matrix of the solid high molecule electrolyte; casting and drying for obtaining a solid high molecule film; and injecting a lithium chloride dissolved organic solvent electrolyte.
Abstract:
본 발명은 카본 전극의 전리튬화 방법과 이를 이용한 리튬 이차전지 제조방법에 관한 것으로, 종래의 리튬 이차전지는 음극으로 사용된 카본 전극이 피막형성 반응의 비가역적 반응으로 리튬 이온의 소모를 가져와 전지의 용량을 감소시키는 역효과와 싸이클 수명이 저하하게 되는 문제점이 있는 바, 본 발명은 카본 전극과 리튬 금속을 저항으로 연결하거나 직접 접촉시킨 상태에서 온도와 전해질의 이온전도도를 변화시켜서 카본 전극이 리튬화 되는 속도와 양을 조절하고, 리튬화 후에 일정 온도와 시간 동안 안정화 시킴으로써 카본 전극 표면상에 안정한 피막을 형성하여 카본 전극의 가역성을 향상시키고, 리튬화된 카본 전극으로 리튬 이차전지를 제조하여, 카본 전극에서의 비가역용량에 의한 용량저하를 방지함으로써 용량증가와 충방전시 충� �전 효율 문제로 인하여 소모되는 리튬의 양을 보충해줌으로써 싸이클 수명을 향상시키도록 한 것이다.