Abstract:
저온의 녹는점을 갖는 플럭스를 이용한 태양전지용 CI(G)S계 박막의 제조방법 및 그 제조방법에 의해 제조된 CI(G)S계 박막에 개시된다. 본 발명의 CI(G)S계 박막의 제조방법은, CI(G)S계 나노입자를 제조하는 단계(단계 a); CI(G)S계 나노입자와 녹는점이 30~400℃ 범위에 있는 플럭스를 포함하는 슬러리를 제조하는 단계(단계 b); 슬러리를 기판에 비진공 코팅하여 CI(G)S계 전구체 박막을 형성하는 단계(단계 c); CI(G)S계 전구체 박막을 건조시키는 단계(단계 d); 및 CI(G)S계 전구체 박막을 셀레늄증기를 이용하여 셀렌화 열처리하는 단계(단계 e); 를 포함한다. 이에 의하여, 종래 CI(G)S계 박막의 형성에서보다 낮은 온도로 셀렌화 열처리가 가능하여 제조비용을 절감하면서도, 낮은 온도에서도 박막 내 결정성장이 충분히 이루어질 수 있다.
Abstract:
본 발명은 후면전극이 다중층으로 구성된 CIGS 박막 태양전지에 관한 것으로, 태양전지의 기판(100)위에 형성되는 후면전극(200)에 있어서, 태양전지 후면전극의 제조방법에 있어서, (i) 태양전지의 기판(100) 위에 저저항 금속으로 저저항 금속층(210)을 형성시키는 단계(s1000), (ii) 상기 저저항 금속층(210) 위에 몰리브덴(Mo)층(220)을 형성시키는 단계(s2000) 를 포함하는 것을 특징으로 하여 태양전지의 광전변환효율을 높이는 효과가 있는 것임.
Abstract:
태양전지에 사용되는 CI(G)S의 제조 과정 중 셀렌화 공정의 효율을 높이기 위한 방법으로 더욱 구체적으로는 CI(G)S계 전구체 박막을 일정 콘테이너 혹은 챔버에 삽입하여, 상기 콘테이너 혹은 챔버 내에 셀레늄(Se)을 주입하고 온도를 올려 셀렌화하는 공정을 통해 고압력 셀렌화가 가능한 것에 관한 것으로 일정 콘테이너 혹은 챔버 내에 셀레늄(Se) 분압을 높여 고압력 셀렌화를 통해 손실되는 셀레늄(Se)을 줄일 수 있고, 셀렌화의 효율을 높이고 열처리의 시간을 단축시킬 수 있는 효과를 나타낸다. 이를 위해 상기 CI(G)S계 전구체 박막과 상기 챔버(Chamber)의 간격이 6 mm 내지 20 mm이고, 상기 챔버(Chamber)에 셀레늄(Se)을 주입하며, 셀렌화를 위한 열처리는 상기 챔버(Chamber)의 내측 일면 또는, 내측 전면에 위치하는 발열체에 의해 온도를 증가시킨다.
Abstract:
소스 잔류물 배출형 셔터를 구비한 진공 증발원 및 이를 포함하는 증착 장비가 개시된다. 본 발명에 따른 소스 잔류물 배출형 셔터를 구비한 진공 증발원은, 원통형의 내부 공간을 제공하는 외부 용기와, 상기 외부 용기의 내부 공간에 거치되는 도가니 및 상기 외부 용기와 상기 도가니 사이에 배치되어 상기 도가니를 가열하는 히터를 포함하는 진공 증발원 본체; 및 상기 진공 증발원 본체의 출구 측에 배치되어 상기 도가니의 출구를 개폐하는 것으로서, 상기 도가니의 출구와 마주보는 안쪽 면에 응축된 소스 잔류물이 상기 외부 용기 바깥쪽으로 흘러 배출될 수 있도록, 상기 안쪽 면의 상기 도가니 출구에 대응되는 영역으로부터 상기 외부 용기 바깥쪽 영역까지 연장되게 배치된 다수의 흐름 가이드를 갖는 셔터;를 포함한다. 본 발명에 따른 증착 장비는 전술한 구성을 가지고, 진공 챔버 내에서 기판의 중심을 향해 기울어지게 배치된, 다수의 진공 증발원을 포함한다.
Abstract:
본 발명은 CIGS를 포함하는 CIS계 태양전지의 후면전극에 관한 것으로, 기판과 CIGS를 포함하는 CIS계 광흡수층 사이에 형성된 CIS계 태양전지의 후면전극으로서, 상기 기판 위에 형성되고 Na이 10wt% 이상 포함된 금속재질의 제1전극층; 및 상기 제1금속층 위에 형성되고 Na이 포함되지 않은 금속재질의 제2전극층으로 구성되는 것을 특징으로 한다. 이때, 본 발명의 제1전극층과 제2전극층의 두께 비는 10:3 ~ 10:1 인 것이 바람직하다. 본 발명은, 10wt% 이상의 Na를 첨가한 제1전극층과 얇은 제2전극층을 구비함으로써, 광흡수층에 확산되는 Na의 양을 늘려 CIS계 태양전지의 효율을 크게 향상시킬 수 있는 효과가 있다. 이러한 태양전지 효율의 향상은 단순히 제1전극층의 Na의 함량을 늘리고, 제2전극층의 두께를 얇게 하여 제조된 후면전극을 이용한 것에서 예상하기 어려운 정도의 효율 향상이며, 이로부터 Na가 포함되지 않은 다양한 기판에 대하여 효율이 뛰어난 CIS계 태양전지를 제조할 수 있는 효과가 있다.
Abstract:
본 발명은 텍스처층을 포함하는 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법에 관한 것으로서, 기판을 준비하는 단계; 상기 기판에 텍스처층을 형성하는 단계; 상기 텍스처층에 후면전극을 형성하는 단계; 상기 후면 전극 위에 칼코게나이드계 반도체 재질의 광흡수층을 형성하는 단계; 상기 광흡수층 위에 버퍼층을 형성하는 단계; 상기 버퍼층 위에 투명전극을 형성하는 단계; 및 상기 투명전극의 표면에 전면텍스처를 형성하는 단계를 포함하며, 상기 텍스처층에 의하여 상기 후면전극의 표면에 요철이 형성되는 것을 특징으로 한다. 본 발명에 의한 텍스처층을 포함하는 2중 텍스처 구조의 칼코게나이드계 태양전지는, 기판; 상기 기판 위에 형성된 텍스처층; 상기 텍스처층 위에 형성된 후면전극; 상기 후면 전극 위에 형성된 칼코게나이드계 반도체 재질의 광흡수층; 상기 광흡수층 위에 형성된 버퍼층; 및 상기 버퍼층 위에 형성된 투명전극을 포함하여 구성되고, 상기 텍스처층 표면의 텍스처 구조에 의하여 상기 후면전극의 표면에 요철이 형성되며, 상기 투명전극의 표면에 전면텍스처 구조가 형성된 것을 특징으로 한다. 본 발명은 전면텍스처와 텍스처층의 2중 텍스처 구조를 구비하여 광포획 성능을 크게 증가시킴으로써, 태양전지의 광전변환효율을 향상시키는 효과가 있다.
Abstract:
본 발명은 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법에 관한 것으로서, 기판을 준비하는 단계; 상기 기판의 표면에 기판텍스처를 형성하는 단계; 상기 기판에 후면전극을 형성하는 단계; 상기 후면 전극 위에 칼코게나이드계 반도체 재질의 광흡수층을 형성하는 단계; 상기 광흡수층 위에 버퍼층을 형성하는 단계; 상기 버퍼층 위에 투명전극을 형성하는 단계; 및 상기 투명전극의 표면에 전면텍스처를 형성하는 단계를 포함하며, 상기 기판텍스처에 의하여 상기 후면전극의 표면에 요철이 형성된 것을 특징으로 한다. 본 발명에 의한 기판에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지는, 기판; 상기 기판 위에 형성된 후면전극; 상기 후면 전극 위에 형성된 칼코게나이드계 반도체 재질의 광흡수층; 상기 광흡수층 위에 형성된 버퍼층; 및 상기 버퍼층 위에 형성된 투명전극을 포함하여 구성되고, 상기 광흡수층에 접하는 상기 후면전극의 표면에 후면텍스처 구조가 형성되며, 상기 투명전극의 표면에 전면텍스처 구조가 형성된 것을 특징으로 한다. 본 발명은 전면텍스처와 기판텍스처의 2중 텍스처 구조를 구비함으로써 광포획 성능을 크게 증가시켜, 태양전지의 광전변환효율을 향상시키는 효과가 있다.
Abstract:
본 발명은 습식식각의 방법으로 산화아연 박막에 나노단위의 요철구조를 형성하는 방법에 관한 것으로, 기판을 준비하는 단계; 나노미터 범위의 높이와 폭을 가지는 나노구조를 형성하는 단계; 상기 나노구조가 형성된 기판 위에 산화아연 박막을 형성하는 단계; 및 상기 산화아연 박막을 습식식각하는 단계를 포함하여 구성되고, 상기 습식식각하는 단계에서 상기 나노구조의 위에 위치하여 물리적 치밀성이 상대적으로 낮은 산화아연이 우선적으로 식각되어, 상기 나노구조의 주변으로 식각에 의한 요철구조가 형성되는 것을 특징으로 한다. 본 발명은 요철구조의 위에 균일하게 박막을 형성할 수 있을 뿐만 아니라 요철구조의 사이에 전해질이나 유기물이 균일하게 침투할 수 있는 효과가 있다. 또한, 본 발명은 요철구조의 종횡비를 조절할 수 있을 뿐만 아니라 요철구조가 전체적으로 연결되어 있기 때문에, 과도한 종횡비의 차이에 의해서 저항이 증가하는 문제가 발생하지 않는다.